Bias from network misspecification under spatial dependence

Author:

Betz Timm,Cook Scott J,Hollenbach Florian MORCID

Abstract

The pre-specification of the network is one of the biggest hurdles for applied researchers in undertaking spatial analysis. In this letter, we demonstrate two results. First, we derive bounds for the bias in non-spatial models with omitted spatially-lagged predictors or outcomes. These bias expressions can be obtained without prior knowledge of the network, and are more informative than familiar omitted variable bias formulas. Second, we derive bounds for the bias in spatial econometric models with non-differential error in the specification of the weights matrix. Under these conditions, we demonstrate that an omitted spatial input is the limit condition of including a misspecificed spatial weights matrix. Simulated experiments further demonstrate that spatial models with a misspecified weights matrix weakly dominate non-spatial models. Our results imply that, where cross-sectional dependence is presumed, researchers should pursue spatial analysis even with limited information on network ties.

Publisher

Center for Open Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3