Classificação automática de crises epilépticas e crises não epilépticas psicogênicas utilizando aprendizado de máquina

Author:

Santos Kaue1,Pires Ricardo1ORCID

Affiliation:

1. Instituto Federal de Educação, Ciência e Tecnologia de São Paulo, São Paulo, Brasil.

Abstract

Este artigo aborda o estudo e aplicação do classificador do tipo Máquina de Vetores de Suporte (SVM) na diferenciação entre crises epilépticas e crises não epilépticas psicogênicas (CNEP). Um banco de dados com exames de eletroencefalograma (EEG) contendo 117 crises epilépticas e 42 crises não epilépticas psicogênicas foram coletados na Unidade de Videoeletroencefalografia do Instituto de Psiquiatria do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (IPq-HCFMUSP). Baseando-se nos registros dos 18 canais do EEG durante cada crise, foram gerados vetores de características com quatro atributos: média, desvio padrão, valor máximo e valor mínimo. Estes vetores de características foram utilizados na fase de treinamento e avaliação do classificador SVM em quatro configurações de kernels disponíveis: Linear, Polinomial, Função de Base Radial (RBF) e Sigmoide. Como resultado, o kernel Polinomial apresentou melhor desempenho com a taxa de acerto (acurácia) de 78,7%, sensibilidade de 100% e especificidade de 2,4%. Com base nos vetores de características utilizados, foi possível concluir que o classificador SVM é adequado para a detecção de crises epilépticas, sendo inadequado para os casos de CNEP. Estes resultados podem ser otimizados com a aplicação da Transformada de Fourier ou Transformada Wavelet no tratamento prévio dos sinais de EEG, além da geração de vetores de características com atributos distintos.

Publisher

The Academic Society

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Seis anos da TASJ em perspectiva;The Academic Society Journal;2022-06-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3