Study of mechanical behavior of additive manufacturing bioresorbable polymeric stents models

Author:

Del Monaco Adriana DM1ORCID,Del Monaco MI2,Andrade Aron JP2ORCID,Malmonge Sonia Maria3ORCID

Affiliation:

1. Federal University of ABC (UFABC), Brazil. Dante Pazzanese Institute of Cardiology - University of São Paulo (IDPC-USP), Brazil.

2. Dante Pazzanese Institute of Cardiology - University of São Paulo (IDPC-USP), Brazil.

3. Federal University of ABC (UFABC), Brazil.

Abstract

Stents are devices with important applications in cardiology. They can be used in different cases, as coronary artery disease, peripheral interventions, such as the iliac and carotid arteries, and in very specific applications, as congenital heart disease in aortic coarctation. Studies point to biodegradability of stents as one of the main properties of future generations of these devices. The development of stents made from fully bioresorbable polymeric materials, with appropriate mechanical properties for different applications, is considered an interesting point to be studied. Thus, the objective of this project was to study models of bioabsorbable stents of poly (-L-lactic acid) (PLLA), poly (-LD lactic acid) (PLDLA) produced by additive manufacturing. The mechanical performances were evaluated by stress and tensile strain tests of different blends compositions of these materials. A heatshock shape memory allocation process and a flexible tube model for simulating implant conditions were developed. PLLA has higher mechanical strength and hardness, while PLDLA is more elastic. Thus, it was possible to study the adequacy of the composition and mechanical properties of the prototypes for each different situation studied (coronary, peripheral and Aortic coarctation implants).

Publisher

The Academic Society

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Seis anos da TASJ em perspectiva;The Academic Society Journal;2022-06-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3