Author:
Bakary BALLO Abou, ,Diarra MAMADOU,Jean AYIKPA Kacoutchy,Konan YAO,Assi ABLAN Emma Aké,Fernand KOUAMÉ Koffi
Abstract
— Plant identification is most often based on visual observations by botanists and systematists. Deep learning has become a tool that provides an alternative to automatic plant identification. Our study consists in implementing a method for plant recognition from herbarium specimens using deep learning classification methods. These methods were evaluated on the dataset of ten plant families from the national herbarium of Côte d'Ivoire. The proposed work uses CNN architectures such as DensNet-121, InceptionV3, VGG19, MobileNet, and ResNet101. The dataset contains 7543 images of herbarium specimens. The database is structured in three parts: training, testing, and validation. The accuracies obtained for the first scenario without preprocessing of herbarium specimen images are 76.94% for MobileNet, 77.77% for VGG19, and 77.96% for InceptionV3, 80.41% for ResNet101, and 83.47% for DensNet-121, respectively. The best performance was obtained with DensNet-121 with 83.47%. In the second scenario with preprocessing of herbarium specimens, the accuracies obtained were 82.80% for InceptionV3, 84.40% for VGG19, 85.53% for MobileNet, and 85.80% for ResNet101. The best accuracy was obtained with ResNet121 with 85.80%. From the analysis obtained, the results show that ResNet101 gives the best accuracy compared to the other architectures. In particular, the data preprocessing improves the prediction results, of the Convolutional Neural Network algorithms. Keywords— Deep learning, Herbarium specimens, image preprocessing, Convolutional Neural Network, Classification.
Subject
General Earth and Planetary Sciences,General Engineering
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Enhancing Robotic Automation In Industries Using Industrial Informatics;2024 IEEE 13th International Conference on Communication Systems and Network Technologies (CSNT);2024-04-06
2. The Role of Machine Learning in Optimizing Radar Signal Analysis;2024 IEEE 13th International Conference on Communication Systems and Network Technologies (CSNT);2024-04-06
3. Designing User-Friendly Human-Machine Interaction Interfaces For Industrial Systems;2024 IEEE 13th International Conference on Communication Systems and Network Technologies (CSNT);2024-04-06
4. Shaping the Future of Mobile Edge Computing with Innovative Architectures and Designs for Web3.0 over 5G/6G Networks;2024 IEEE 13th International Conference on Communication Systems and Network Technologies (CSNT);2024-04-06
5. Blockchain and Machine Learning for Intelligent Traffic Management Systems in Urban Planning;2024 IEEE 13th International Conference on Communication Systems and Network Technologies (CSNT);2024-04-06