Seasonal effect on the accuracy of Land use/Land cover classification in the Bilate Sub-basin, Abaya-Chamo Basin, Rift valley Lakes Basin of Ethiopia.

Author:

Yimer Alemeshet Kebede,Haile Alemseged Tamiru,Hatiye Samuel Dagalo,Azeref Assefa Gedle

Abstract

A correct and timely land use/land cover (LULC) classification provides indispensable information for the effective management of environmental and natural resources. However, earlier studies mapped the LULC map of Bilate Sub-basin using remote sensing images that were acquired for a single season. Hence, these studies did not consider the seasonal effects on the accuracy of LULC classification. Therefore, the objective of this study was to evaluate changes inclassification accuracy for images acquired during wet and dry seasons in the Bilate Sub-basin. LULC of the study area was classified using the Landsat 8 satellite imageries. Based on field observations, we classified the LULC of the study area into 9 dominant classes. The classification for the two seasons resulted in a noticeable difference between the LULC composition of the study area because of seasonal differences in the classification accuracy. The overall accuracy of theLULC maps was 80%for the wet season and 90% for the dry season with Kappa coefficient values of 0.8 and 0.9 respectively. Therefore, the two seasons showed a significant difference in the overall accuracy of the classification. However, we discovered that when the classification accuracy was tested locally, that is for individual pixels, the results were not the same. In Bilate Sub-basin, several pixels (14.71%) were assigned to different LULC classes on the two seasonsmaps while 85.29% of the LULC classes remained unaltered in the two maps. According to the classification results, the season had a noticeable effect on the accuracy of LULC classification. This suggests that for LULC classification, multitemporal images should be used rather than a single remote sensing image.

Publisher

Arba Minch University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3