Parmak Hareketlerine Dayalı Gerçek Zamanlı İnsan-Makine Arayüzleri için Giyilebilir Elektromiyogram Tasarımı

Author:

AYDOĞAN İsmail1,AKMAN AYDIN Eda2

Affiliation:

1. GAZI UNIVERSITY, INSTITUTE OF SCIENCE

2. GAZİ ÜNİVERSİTESİ

Abstract

In this study, a wearable electromyogram (EMG) system on the forearm was designed to analyze finger movements for use in human-machine interfaces. The designed system measures the EMG signals without restricting the user's movements, analyzes these measurements through the software embedded in the system, and transmits the generated response to the output units to be controlled in real-time with wireless communication techniques. In the study, a three-channel EMG amplifier was designed and a system in which the NodeMCU V3 development board could be integrated was realized.With the system, the features of finger movements were obtained using the Mean Absolute Value (MAV) and classified using Support Vector Machines (SVM) and Random Forest (RF) methods. In offline tests, 99.47% accursacy with RF and 98.2% accuracy with SVM were obtained. The RF algorithm with 99.47% accuracy in offline tests was selected and integrated into the embedded system for online tests. In the online tests performed with five volunteers, the system was able to analyze finger movements with an average accuracy of 92.16%, and the commands associated with the finger movements analyzed by the system were sent to the clients with the User Datagram Protocol (UDP), and the related movements were displayed on the output unit interface. The system can work in real-time with a delay of 90 ms and instantaneous movements can be seen visually on the designed output unit interface. This study is an important step in the detection of muscle diseases, the control of EMG-based wearable prosthetic systems, and the design of unmanned vehicles that can be controlled by finger movements.

Publisher

Politeknik Dergisi

Subject

Colloid and Surface Chemistry,Physical and Theoretical Chemistry

Reference36 articles.

1. [1] Engin K. O. Ç., Bayat O., Duru D. G. and Duru A. D., “Göz hareketlerine dayalı beyin bilgisayar arayüzü tasarımı”, International Journal of Engineering Research and Development, 12(1): 176-188, (2020).

2. [2] Meyns P., Van de Crommert H. W. A. A., Rijken H., Van Kuppevelt D. H. J. M. and Duysens, J. "Locomotor training with body weight support in SCI: EMG improvement is more optimally expressed at a low testing speed” Spinal cord, 52(12): 887-893, (2014).

3. [3] Fong E. M. and Chung W. Y., “Mobile cloud-computing-based healthcare service by noncontact ECG monitoring” Sensors, 13(12): 16451-16473, (2013).

4. [4] Ocal H., DOĞRU İ. and BARIŞÇI N, “Internet of Things in Smart and Conventional Wearable Healthcare Devices”, JOURNAL OF POLYTECHNIC-POLITEKNIK DERGISI, 22(3), (2020).

5. [5] Aydin E. A., Bay O. F., & Guler I., “P300-based asynchronous brain computer interface for environmental control system”, IEEE journal of biomedical and health informatics, 22(3): 653-663, (2017).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3