Yüksek Vakumda Sülfürleme ile CuS İnce Filmlerin İki Aşamalı Sentezi

Author:

YILDIRIM Ali1ORCID,CEYLAN Abdullah1ORCID

Affiliation:

1. HACETTEPE ÜNİVERSİTESİ

Abstract

In this study, synthesis of CuS thin films on soda lime glass (SLG) substrates has been investigated. The synthesis method is based on high vacuum post-sulphidation of Cu thin films deposited by rf. magnetron sputtering. Sputtering conditions have been optimized so as to reduce grain size for better diffusion of S atoms through grain boundaries. XRD pattern of the precursor Cu sample revealed fcc structure with an average crystallite size of 24 nm. Best sulphidation was obtained at 175 oC for 60 min. The crystallite size of CuS calculated from the dominant peak of (110) planes was approximately 48 nm while average grain size observed via SEM was about 400 nm. Raman spectroscopy confirmed CuS structure by scattering peaks at around 467-472 cm-1. Elemental mapping unveiled homogenous distribution of Cu and S atoms over the surface. According to EDS data, at% compositions of Cu and S were 51.6% and 48.4%, respectively. Moreover, SIMS investigation has demonstrated uniformity of S atoms through the thickness of CuS thin film. Although XRD, Raman, and EDS analysis have resulted in predominant formation of CuS structure, existence of Cu2S phase with a strong luminescence peak located at 1.8 eV was determined by PL spectroscopy.

Funder

Tübitak

Publisher

Politeknik Dergisi

Subject

Colloid and Surface Chemistry,Physical and Theoretical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3