Çeşitli Kenar Sınır Koşullarına Sahip İnce İzotropik Düz Plakaların ve Eğri Plakaların Panel Çarpıntı Sayısal Çalışması

Author:

PANY Chıtaranjan1

Affiliation:

1. Vikram Sarabhai Space centre

Abstract

In this article, supersonic panel flutter analysis of flat plates and curved plates with different edge boundary conditions are studied, using efficient, high precision triangular shallow shell finite elements. The fluid on the underside of the plate was is assumed to be stationary. The linear piston theory can be applied to the top surface of the plate. The linear piston theory was used to evaluate the aerodynamic loads. The solution of a complex eigenvalue problem was formulated according to Hamilton’s principle. Lagrange’s equation of motion was obtained using standard methods for finding eigenvalues. Current finite element analysis ignores aerodynamic damping. For panels, the theory of thin and small deformed shells was taken into account. To validate the developed finite element code, the results of a square and rectangular flat-panels with simply supported edges (S-S-S-S), a square plate with four fixed edges (C-C-C-C), and a square plate with the length side clamps (C-S-C-S) were compared with the published data. The flutter results of other edge boundary conditions (S-C-S-C, C-S-C-S, and C-C-C-C) for square and rectangular flat panels are evaluated for which literature data is limited. It has been found that the fixed condition in the cross-flow direction (S-C-S-C) has a significant effect on the critical flutter pressure parameters and flutter frequencies. Further, to study the aforementioned effect, the current finite element (FE) has been extended to curved plates with S-C-S-C(constrained in the cross-flow direction and exposed to supersonic flow), SS-S-S boundary conditions to find flutter results.

Publisher

Politeknik Dergisi

Subject

Colloid and Surface Chemistry,Physical and Theoretical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3