Detection and Classification of Fabric Defects Using Deep Learning Algorithms

Author:

GEZE Recep Ali1ORCID,AKBAŞ Ayhan2ORCID

Affiliation:

1. CANKIRI KARATEKIN UNIVERSITY

2. University of Surrey

Abstract

The textile industry primarily relies on fabric as a crucial raw material, the production of which involves multiple complex stages. Due to the multitude and complexity of these stages, fabric defects can frequently occur. With the modern fabric production process being nearly fully automated, and given the variety of potential defects, detecting errors on fabrics has become increasingly challenging. The rapid pace of production and the substantial market share of the sector mean that relying on human inspection for error detection can lead to significant time losses and can reduce the accuracy of defect detection to around 60%. Consequently, recent years have seen a shift towards the development of intelligent systems for fabric defect detection in parallel with technological advancements. With the rapid progression of artificial intelligence, the application of image processing techniques has commenced in this field. This study has developed a real-time defect detection system for fabrics using deep learning techniques. Initially, a network model was created using an open-source neural network library, CNN, achieving 89% accuracy. Subsequent implementations using the VGG16 and InceptionV3 architectures reached accuracies of 89% and 86%, respectively. To further improve the study, fabrics were classified into two categories: defective and non-defective, and the pre-trained Convolutional Neural Networks model ResNet50-v2 was employed as a feature extractor. This approach yielded an approximate accuracy of 95%.

Publisher

Politeknik Dergisi

Reference24 articles.

1. [1] Gezer D., “Marka Değeri Yaratılması ve Konfeksiyon / Hazır giyim Sektöründe Bir Örnek Olay İncelemesi,” Yüksek Lisans, İstanbul Üniversitesi, Sosyal Bilimler Enstitüsü, İstanbul, (2006).

2. [2] Ciklacandir F. G. Y., “Kumaşlarda Hatayı Yerel Olarak Arayan Denetimsiz Bir Sistem”,Tekstil ve Mühendis, 27:(120),252- 259, (2020).

3. [3] Devrim A., “Dokuma Üretimi Süresince Oluşan Kumaş Hatalarının Belirlenmesine Yönelik İstatistiksel Bir Araştırma,” Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 21, 282-287, (2015).

4. [4] Güvenoğlu E., “Shearlet Dönüşümü ve Görüntü İşleme Teknikleri Kullanılarak Kot Kumaşlar Üzerinde Gerçek Zamanlı Hata Tespiti” , El-Cezerî Fen ve Mühendislik Dergisi, 491-502, (2019).

5. [5] Pınar Z., “Denim Kumaşlarda Görüntü İşleme İle Hata Tespiti”, BEÜ Fen Bilimleri Dergisi, 1609-1620,(2020).

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3