Otomobillerde Kullanılan Ticari Yağ Katkı Maddesinin Sürtünmeye Etkisinin Deneysel Analizi

Author:

ŞİMŞEK Mithat1ORCID,SALMAN NTEZİYAREMYE Özlem2,KALELİ Hakan3,TUNAY Recai Fatih4,DURAK Ertuğrul4ORCID

Affiliation:

1. TOKAT GAZİOSMANPAŞA ÜNİVERSİTESİ, MÜHENDİSLİK VE MİMARLIK FAKÜLTESİ, MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ

2. Lam Research

3. YILDIZ TECHNICAL UNIVERSITY, FACULTY OF ENGINEERING, MECHANICAL ENGINEERING PR. (YILDIZ BUILDING)

4. SÜLEYMAN DEMİREL ÜNİVERSİTESİ, MÜHENDİSLİK FAKÜLTESİ, MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ, MAKİNE MÜHENDİSLİĞİ PR.

Abstract

With the development of automotive technology, long life, high power, and low fuel consumption performance are expected from the internal combustion engine. This study investigated the effects of commercial oil additives on friction under different experimental conditions. In order to examine the friction effect, the samples prepared from the piston ring and cylinder were tested with the Reciprocating Test Rig at different speeds and loads. Using additives in the commercial oil lubricant showed a little reduction under the lower load. When the applied load increased commercial oil showed better friction coefficient performance in the experimental study. As for the expected results, the friction coefficient reduced with increasing sliding speeds under all conditions. In general, it was found that the commercial oil supplement did not have much effect on reducing the coefficient of friction when all the results were evaluated under these experimental conditions

Publisher

Politeknik Dergisi

Subject

Colloid and Surface Chemistry,Physical and Theoretical Chemistry

Reference30 articles.

1. [1] Xiao, H., and Liu, S., “2D nanomaterials as lubricant additive: A review”, Materials and Design, 135: 319-332, (2017).

2. [2] Koppula, S.B., and N. V. V. S. Sudheer., “Experimental analysis and investigations on properties of a biological material as lubricant additive”, SN Applied Sciences, 1.1: 1-14, (2019).

3. [3] Durak, E., “Experimental study of friction coefficient of the journal bearing supplied with boric acid addition lubricant”, BAU Journal of Nat. Sc. Inst. 5.1, (2003).

4. [4] Minami, I., “New Researches in Additives (2): Research and Development Toward Novel Lubricity Additives”, Japanese Journal of Tribology, 40-4, 277-283, (1995).

5. [5] Ünlüoğlu, O., and Çelik, O, N., “The Effect of Graphite Particles as Lubricant Additive on the Friction and Wear Behaviour of AISI H11 Steel”, Journal of Polytechnic, 25 (4): 1495-1503, (2022).

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3