Using Deep Learning Techniques Furniture İmage Classification

Author:

KILIÇ Kenan1ORCID,ÖZCAN Uğur2ORCID,KILIÇ Kazım3ORCID,DOGRU İbrahim2ORCID

Affiliation:

1. YOZGAT BOZOK ÜNİVERSİTESİ

2. GAZI UNIVERSITY

3. YOZGAT BOZOK UNIVERSITY

Abstract

Bu makale, mobilya görüntülerinin sınıflandırılması konusunda yapay zeka tekniklerinin kullanılmasını ele almaktadır. Mobilya sektöründe birçok farklı tasarım ve tarz arasından seçim yapmanın zorluğu, tüketiciler ve satıcılar için bir sorun oluşturmaktadır. Makine öğrenimi algoritmaları ve sinir ağları, mobilya görüntülerini otomatik olarak sınıflandırma sürecinde kullanılmaktadır. Makalenin amacı, mobilya görüntülerinin sınıflandırılmasıyla tüketicilerin ve mobilya endüstrisi profesyonellerinin karşılaştığı sorunları çözmektir. Makalede, mobilya görüntülerinin sınıflandırılması için beş farklı evrişimli sinir ağı mimarisi kullanılmıştır: Alexnet, VGGNet-19, DenseNet-201, Squeezenet1.1 ve ResNet-152. Bu mimarilerin kullanımıyla %98.87 sınıflandırma başarısı elde edilmiştir. Beş farklı mobilya kategorisi (yatak, sandalye, kanepe, döner koltuk ve masa) sınıflandırılmış ve ResNet-152 mimarisiyle %99.96 ROC (Receiver Operating Characteristic) değeri elde edilmiştir. Ayrıca, transfer öğrenme yaklaşımının kullanılmasıyla daha hızlı ve doğru sonuçlar elde edildiği belirtilmiştir. VGG-19 ve SqueezeNet1.1 mimarileri %97.07 ortalama sınıflandırma doğruluğu sağlarken, en düşük doğruluğu Alexnet modeli (%94.15) gerçekleştirmiştir. Derin öğrenme algoritmalarının kullanılmasıyla görüntülerin özellikleri çıkarılmakta ve sınıflandırılmaktadır. Bu çalışma, teknolojinin daha akıllı ve kullanıcı odaklı bir alışveriş deneyimi sunma potansiyeline sahip olduğunu göstermektedir. Aynı zamanda, mobilya üretim ve satışında verimliliği artırarak rekabet avantajı sağlayabilecek bir mobilya sınıflandırma yöntemi sunmaktadır. Çalışmada elde edilen sonuçlar, mobilya görüntülerinin analizi ve sınıflandırılmasında CNN mimarilerinin etkili olduğu göstermiştir.

Publisher

Politeknik Dergisi

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3