Did selection for seed traits across the Cretaceous/Paleogene boundary sort plants based on ploidy?

Author:

Berry Keith,Jaganathan Ganesh K.

Abstract

Paleobotanists debate whether the Cretaceous/Paleogene boundary (KPB) event was selective. As the hypothesis that the KPB event selected for plants with fast-return leaf economic traits (e.g. deciduousness) has lost empirical support in recent investigations, researchers have turned to alternative hypotheses to explain an abrupt decline in primary productivity across the KPB. Two contemporary hypotheses designed to explain selectivity among plants across the KPB are that (1) polyploids exhibited greater survivorship than their diploid progenitors or counterparts (i.e. the KPB-whole genome duplication or WGD hypothesis) and that (2) plants with desiccation-tolerant (DT), i.e. orthodox, seeds exhibited greater survivorship than plants with desiccationsensitive (DS), also known as recalcitrant, seeds. Late embryogenesis abundant (LEA) protein gene families are perceived to confer DT and seed longevity among vascular plants. Non-parametric Wilcoxon signed-rank test for matched pairs and a Mann-Whitney U test reveal that plant lineages perceived to have undergone WGD across the KPB exhibit significantly greater numbers of LEA genes than those that did not. On the basis of these data, this investigation elicits a merger between the KPB-WGD and KPB-seed traits concepts. However, emphasis is shifted from the concept of WGD as an immediate adaptation to climatic stress at the KPB (the KPB-WGD hypothesis) to the concept that WGD was an exaptation, which, by definition, fortuitously enhanced the survival of vascular plants across the KPB but that probably evolved initially in other climatic contexts.

Publisher

W. Szafer Institute of Botany Polish Academy of Sciences

Subject

General Earth and Planetary Sciences,General Agricultural and Biological Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3