Seed traits linked to differential survival of plants during the Cretaceous/Paleogene impact winter

Author:

Berry Keith

Abstract

In past investigations the pattern of differential survival of plants across the K/Pg boundary has been viewed as incompatible with severe asteroid impact winter scenarios (i.e., an impact winter lasting more than a few months), particularly the enigmatic survival of coryphoid palms and Pandanus (screw pine). Stateof- the-art climate models based on soot, sulfate and nano-sized dust aerosols predict a global impact winter that drastically reduced precipitation and resulted in a transient period of total darkness and permafrost conditions. This suggests that the plants most likely to have been affected by the global mass-extinction event were tropical phanerophytes that produce recalcitrant seeds, which by definition are desiccation-intolerant, survive less than a year, and cannot survive freezing. However, this hypothesis has never been tested. In this study I sampled over 100 plant species from the global fossil record that have a high probability of having produced either recalcitrant seeds/disseminules (n1 = 58) or orthodox seeds (n2 = 59), based on their phylogenetic relationships with extant taxa that either are monomorphic for these traits or specifically exhibit a genetic marker for abscisic acid inhibition associated with seed dormancy and recalcitrance. A one-tailed z-test for the difference between two proportions revealed that plant taxa with a high probability of having produced recalcitrant seeds had significantly lower survivorship than plant taxa with a high probability of having produced orthodox seeds (p < 0.0001). Based on these data, it can be concluded that plants which formed a frost-tolerant seed bank during the latest Maastrichtian were significantly more likely to survive the K/Pg impact winter than plants which did not (including palms). These data clearly indicate that the K/Pg impact winter probably lasted longer than a year and that it selected for seed-based traits that effectively sorted correlated functional traits of mature plants (i.e., leaf physiognomic features). This novel hypothesis stands as an alternative to J.A. Wolfe’s classic hypothesis that a mild K/Pg impact winter selected for fast-growing angiosperms with deciduous leaves and did not affect the plant communities of the Southern Hemisphere. Potential mechanisms for the rare survival of tropical, recalcitrant-seeded plants are discussed.

Publisher

W. Szafer Institute of Botany Polish Academy of Sciences

Reference139 articles.

1. Alvarez, L.W., Alvarez, W., Asaro, F., Michel, H.V., 1980. Extraterrestrial cause for the Cretaceous- Tertiary extinction. Science 208, 1095–1108.

2. Alvarez, W., Alvarez, L.W., Asaro, F., Michel, H.V., 1982. Current status of the impact theory for the terminal Cretaceous extinction. GSA Special Paper 190, 305–315.

3. Andruchow-Colombo, A., Escapa, I.H., Cúneo, N.R., Gandolfo, M.A., 2018. Araucaria lefipanensis (Araucariaceae), a new species with dimorphic leaves from the Late Cretaceous of Patagonia, Argentina. American Journal of Botany 105, 1–21.

4. Ash, S.R., Tidwell, W.D., 1976. Upper Cretaceous and Paleocene floras of the Raton Basin, Colorado and New Mexico. In: Ewing, R.C., and Kues, B.C. (eds) New Mexico Geological Society 27th Field Conference Guidebook. New Mexico Geological Society, Socorrow, pp. 197–203.

5. Barbour, J.R., 2008. Serenoa repens (Bartr.) Small. In: Bonner, F.T., Karrfait, R.P. (eds) The Woody Plant Seed Manual, 1039–1042.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3