Unveiling the Complexity of Medical Imaging through Deep Learning Approaches

Author:

RASOOL Novsheena1ORCID,IQBAL BHAT Javaid2ORCID

Affiliation:

1. Islamic University of Science and Technology, Kashmir, India

2. Islamic University of Science & Technology,Kashmir,India.

Abstract

Recent advancements in deep learning, particularly convolutional networks, have rapidly become the preferred methodology for analyzing medical images, facilitating tasks like disease segmentation, classification, and pattern quantification. Central to these advancements is the capacity to leverage hierarchical feature representations acquired solely from data. This comprehensive review meticulously examines a variety of deep learning techniques applied across diverse healthcare domains, delving into the intricate realm of medical imaging to unveil concealed patterns through strategic deep learning methodologies. Encompassing a range of diseases, including Alzheimer’s, breast cancer, brain tumors, glaucoma, heart murmurs, retinal microaneurysms, colorectal liver metastases, and more, the analysis emphasizes contributions succinctly summarized in a tabular form.The table provides an overview of various deep learning approaches applied to different diseases, incorporating methodologies, datasets, and outcomes for each condition.Notably, performance metrics such as accuracy, specificity, sensitivity, and other crucial measures underscore the achieved results. Specifically, an in-depth discussion is conducted on the Convolutional Neural Network (CNN) owing to its widespread adoption as a paramount tool in computer vision tasks. Moreover, an exhaustive exploration encompasses deep learning classification approaches, procedural aspects of medical image processing, as well as a thorough examination of key features and characteristics. At the end, we delve into a range of research challenges and put forth potential avenues for future improvements in the field.

Publisher

Akif Akgul

Subject

Mechanical Engineering,Electrical and Electronic Engineering,Biomedical Engineering,Engineering (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Brain tumour detection using machine and deep learning: a systematic review;Multimedia Tools and Applications;2024-05-23

2. Chaos in Physiological Control Systems: Health or Disease?;Chaos Theory and Applications;2024-03-31

3. Automated Diabetic Retinopathy Detection Using Multi-Column Deep Neural Networks;2024 11th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO);2024-03-14

4. TransResUNet: Revolutionizing Glioma Brain Tumor Segmentation Through Transformer-Enhanced Residual UNet;IEEE Access;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3