3D Chaotic Nonlinear Dynamic Population-Growing Mathematical System Modeling with Multiple Controllers

Author:

Hussain Shaymaa1ORCID,Al-saidi Nadia1ORCID,Obaıys Suzan2ORCID,Karaca Yeliz3ORCID

Affiliation:

1. University of Technology

2. University Malaya

3. University of Massachusetts Chan Medical School

Abstract

Modeling, stabilization, and identification processes are significant stages in the process of developing knowledge about chaotic dynamical systems which entail the effective prediction depending on the degree of uncertainty toleration in the forecast, accuracy of the current state to be measured as well as a time scale resting on the dynamics of the system. Control of under-activated dynamical systems has been considered substantially, and it is for periods and is currently developing in various domains such as biology, data analysis, computing systems, and so forth. Dynamic systems of growing population signifies a model describing the way a population evolves over time during which population goes through major life events, split into discrete time periods. The size of the population at a given time period is determined by the rate of growth as well as other related factors. Most progress has been made in model-based control theory, which has drawbacks when the system under consideration is exceedingly complicated, and no model can be constructed. Accordingly, a 3D-discrete and dynamic human population growth system with many controllers is proposed by examining the stability and symmetry of controller system clarifications. The symmetric stability control results are presented by considering a special parametric dynamic system in its coefficients besides suggesting periodic functional coefficients in terms of sin and cos functions. The controllers have the ability to reduce population growth rate unpredictability or enhance system stability under various external conditions. The unique and very effective strategies in relevant domains could provide a deeper understanding of their impact as well as the theoretical or technological innovations thereof. These controllers are capable of reducing population growth rate unpredictability or improving system stability under various external conditions, and applicable strategies in the relevant domains can provide profound comprehension over the impact along with the theoretical as well as technological advancements.

Publisher

Akif Akgul

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3