Weighted and Well-Balanced Nonlinear TV-Based Time-Dependent Model for Image Denoising

Author:

CHAUHAN Alka1ORCID,KUMAR Santosh1ORCID,ALAM Khursheed1ORCID

Affiliation:

1. Sharda University Greater Noida

Abstract

The partial differential equation (PDE)-based models are widely used to remove additive Gaussian white noise and preserve edges, and one of the most widely used methods is the total variation denoising algorithm. Total variation (TV) denoising algorithm-based time-dependent models have seen considerable success in the field of image-denoising and edge detection. TV denoising algorithm is based on that signals with spurious detail have a high total variation and reduction of unwanted signals to achieve noise-free images. It is a constrained optimization-type algorithm. The Lagrange multiplier and gradient descent method are used to solve the TV algorithm to reach the PDE-based time dependent model. To eliminate additive noise and preserve edges, we investigate a class of weighted time-dependent model in this study. The proposed method is investigated in a well-balanced flow form that extends the time-dependent model with an adaptive fidelity element. Adaptive function is fusing into the regularization term of the classical time-dependent model which successfully enhances the intensity of the regularizer function. We maintain the ability of the time-dependent model without any oscillation effects. Furthermore, we want to prove the viscosity solution of our weighted and well balanced time-dependent model, demonstrating its existence and uniqueness. The finite difference method is applied to discretize the nonlinear time-dependent models. The numerical results are expressed as a statistic known as the peak signal-to-noise ratio (PSNR) and structural similarity index metric (SSIM). Numerical experiments demonstrate that the proposed model yields good performance compared with the previous time-dependent model.

Publisher

Akif Akgul

Subject

Mechanical Engineering,Electrical and Electronic Engineering,Biomedical Engineering,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3