Analysis of the n-Term Klein-Gordon Equations in Cantor Sets

Author:

SHARMA Nikhil1ORCID,GOSWAMİ Pranay2ORCID,JOSHİ Sunil1ORCID

Affiliation:

1. Manipal University Jaipur

2. Dr B. R. Ambedkar University

Abstract

The effectiveness of the local fractional reduced differential transformation method (LFRDTM) for the approximation of the solution related to the extended n-term local fractional Klein-Gordon equation is the main aim of this paper in which fractional complex transform and local fractional derivative have been employed to analyze the n-term Klein-Gordon equations, and Cantor sets. The proposed method, along with the existence of the solutions demonstrated through some examples, provides a powerful mathematical means in solving fractional linear differential equations. Considering these points, the paper also provides an accurate and effective method to solve complex physical systems that display fractal or self-similar behavior across various scales. In conclusion, the fractional complex transform with the local fractional differential transform method has been proven to be a robust and flexible approach towards obtaining effective approximate solutions of local fractional partial differential equations.

Publisher

Akif Akgul

Subject

Mechanical Engineering,Electrical and Electronic Engineering,Biomedical Engineering,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3