1. Boiko V.S., Yakin M.N., Koval’ S.A., Stefanets A.V., Fentisov I.N., Godynskii A.A., Chichkarev E.A. Optimization of Steel Deoxidation Using Dissolved Oxygen Activity Data. Metall i lit’e Ukrainy, 2012, no. 2–3 (225–226), pp. 12–15. (In Russ.).
2. Kharlashin P.S., Nosenko O.A., Yatsenko A.N. Development of a Rational Technology for Deoxidation of Calm Steel Grades. Vіsnik Priazovs’kogo derzhavnogo tekhnіchnogo unіversitetu. Serіya: Tekhnіchnі nauki, 2011, no. 2 (23), pp. 52–55. (In Russ.).
3. Grigoryan V.A., Belyanchikov L.N., Stomakhin A.Ya. Teoreticheskie osnovy elektrostaleplavil’nykh protsessov [Theoretical foundations of electric arc furnace processes]. Moscow: Metallurgiya, 1979, 256 p. (In Russ.).
4. Dumova L.V., Umanskii A.A. Effektivnost’ primeneniya novykh vidov ferrosplavov dlya raskisleniya rel’sovoi elektrostali [Efficiency of Application of New Types of Ferroalloys for Deoxidation of Rail Electric Steel]. Rol’ tekhnicheskikh nauk v razvitii obshchestva: sbornik materialov II Mezhdunarodnoi nauchno-prakticheskoi konferentsii (Kemerovo, 6 marta 2017 g.). [The Role of Engineering Sciences in the Development of Society: materials of the II International Scientific and Practical Conference (Kemerovo, March 6, 2017)]. Kemerovo: West Siberian Scientific Center, 2017, pp. 125–128. (In Russ.).
5. Shapovalov A.N., Dema R.R, Nefed’ev S.P. Improving the Efficiency of Steel De-Oxidation at the Ural Steel. Materials Science Forum, 2020, vol. 989, pp. 400–405. Doi: 10.4028/www.scientific.net/MSF.989.400.