Determination of Modified Mohr-Coulomb Damage Model Parameters for DH780 Steel in Finite Element Analysis

Author:

CİVEK Tolgahan1ORCID,ŞEN Nuri1ORCID,ELKOCA Oktay1ORCID

Affiliation:

1. DÜZCE ÜNİVERSİTESİ

Abstract

In sheet metal forming processes, tearing problems might be occasionally encountered due to many reasons such as incorrect forming parameters. The trial and error methods that are used to solve such problems, on many occasions, are time-consuming and inefficient in terms of finding the correct forming parameters or die design for the forming process. The finite element analysis method, on the other hand, can be used as a tool that is both time and cost-saving. However, in order to effectively exploit the use of finite element analysis in sheet metal forming operations, the material that is used to be formed needs to be well characterized in terms of its hardening behaviour and failure criteria. In this study, a TRIP-aided DP steel (DH780) has been tensile tested in three different deformation conditions (uniaxial, plane stress and shear) and the parameters of its hardening model (Hollomon) and failure criteria (Modified Mohr-Coulomb) have been determined. According to the simulation results, obtained hardening parameters are able to describe the flow behaviour of the steel and the used failure criterion is able to predict the experimental failure correctly in each deformation condition.

Funder

TUBITAK

Publisher

Duzce Universitesi Bilim ve Teknoloji Dergisi

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The calibration of the MMC damage model under various hardening models and yielding criterions for DP800 steel;Ironmaking & Steelmaking: Processes, Products and Applications;2024-08-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3