Stock Closing Price Prediction with Machine Learning Algorithms: PETKM Stock Example In BIST

Author:

TOPRAK Şevval1ORCID,ÇAĞIL Gültekin1ORCID,KÖKÇAM Abdullah Hulusi1ORCID

Affiliation:

1. SAKARYA ÜNİVERSİTESİ

Abstract

This study predicts the stock price of Petkim Petrokimya Holding Corp. (PETKM), which is listed in Borsa Istanbul (BIST), using PETKM stock price, US dollar (USD/TRY) price and BIST Chemical, Petroleum & Plastic (XKMYA) index price. A time series data set with three inputs and one output is created using these data. Random Forest Regression (RFR), Long-Short Term Memory (LSTM), and Convolutional Neural Network (CNN) algorithms are used in the prediction model. The success of these methods is compared using performance metrics such as MSE, RMSE, MAE, and R2. According to the calculated error metrics, LSTM and RFR algorithms gave better results than CNN with an MSE value less than 0.02. However, the fact that the R2 values of the most successful models created with all three algorithms were greater than 95% revealed that all the algorithms mentioned could be used to estimate this data set.

Publisher

Duzce Universitesi Bilim ve Teknoloji Dergisi

Subject

General Medicine

Reference30 articles.

1. J. C. Jackson, J. Prassanna, Md. Abdul Quadir and V. Sivakumar, “Stock Market Analysis and Prediction using time series analysis,” Materials Today: Proceedings, 2021.

2. W. Chen, H. Zhang, M. K. Mehlawat and L. Jia, “Mean-Variance Portfolio Optmization Using Machine Learning-Based Stock Price Prediction,” Applies Soft Computing Journal, vol 100, 2021.

3. S. Carta, A. Ferreira, A. S. Poddo, D. R. Recupero and A. Sanna, “Multi-DQN: An Ensemble of Deep Q-Learning Agents for Stock Market Forcasting,” Expert Systems with Applications, vol 164, 2021.

4. S. Arslankaya and Ş. Toprak, “Makine Öğrenmesi ve Derin Öğrenme Algoritmalarını Kullanarak Hisse Senedi Fiyat Tahmini,” Uluslararası Mühendislik Araştırma ve Geliştirme Dergisi vol. 13, no. 1, pp. 178-192, 2021.

5. D. Wei, "Prediction of Stock Price Based on LSTM Neural Network," 2019 International Conference on Artificial Intelligence and Advanced Manufacturing (AIAM), 2019, pp. 544-547, doi: 10.1109/AIAM48774.2019.00113.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3