Affiliation:
1. TEKİRDAĞ NAMIK KEMAL ÜNİVERSİTESİ
Abstract
Gelişen teknoloji sayesinde bilgiye kolay erişim sağlansa da, bu durum kötü amaçlı eylemlerin artışına da sebep olmuştur. Android işletim sistemlerinde sıklıkla rastlanan kötü amaçlı yazılımlar (malware), kullanıcıların cihazındaki verilere erişerek büyük bir tehdit oluşturmaktadır. Bu çalışma, kötü amaçlı yazılımları tespit etmek amacıyla yüksek doğruluklu ve güvenilir bir model geliştirmeyi hedeflemektedir. Modelleme çalışmalarında popüler bir veri seti olan DREBIN-215 Android Malware Dataset kullanılmıştır. Makine Öğrenmesi algoritmaları arasından Support Vector Machines (SVM), Gradient Boosting (GB), Multi Layer Perceptron (MLP), Naïve Bayes (MNB), K-En Yakın Komşu (KNN) ve Random Forest (RF) algoritmaları uygulanmıştır. Algoritmaların performansları, varsayılan parametreler ve GridSearch yöntemiyle elde edilen en iyi hiperparametre değerlerinin kullanılmasıyla değerlendirilmiştir. En başarılı model, SVM algoritmasıyla en iyi hiperparametrelerin uygulanması sonucu %99.07 doğruluk oranıyla elde edilmiştir.
Publisher
Duzce Universitesi Bilim ve Teknoloji Dergisi
Reference31 articles.
1. [1] A. T. Kabakuş, İ. A. Doğru and A. Çetin, "Android kötücül yazılım tespit ve koruma sistemleri", Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, vol. 31, no. 1, pp. 9-16, Feb. 2015.
2. [2] M. Grace, Y. Zhou, Q. Zhang, S. Zou and X. Jiang, "RiskRanker: scalable and accurate zero-day android malware detection", MobiSys '12: Proceedings of the 10th international conference on Mobile systems, applications, and services, June 2012, Pages 281–294, https://doi.org/10.1145/2307636.2307663
3. [3] N. Zhang, Y. Tan, C. Yang and Y. Li, "Deep learning feature exploration for Android malware detection", Applied Soft Computing, Volume 102, April 2021, https://doi.org/10.1016/j.asoc.2020.107069
4. [4] A. Razgallah, R. Khoury, S. Halle and K. Khanmohammadi, "A survey of malware detection in Android apps: Recommendations and perspectives for future research", Computer Science Review, Volume 39, February 2021, https://doi.org/10.1016/j.cosrev.2020.100358
5. [5] A. Guerra-Manzanares, M. Luckner and H. Bahsi, "Concept drift and cross-device behavior: Challenges and implications for effective android malware detection", Computers & Security, Volume 120, September 2022, https://doi.org/10.1016/j.cose.2022.102757