Comparative Performance Analysis of Time-Frequency Domain Images and Raw Signal Data for Classification of ECG Signals

Author:

Özseven Turgut1ORCID

Affiliation:

1. TOKAT GAZİOSMANPAŞA ÜNİVERSİTESİ

Abstract

ECG signals are one of the most common tools used to diagnose cardiovascular diseases. ECG signals are obtained by measuring electrical changes on the skin surface. Arrhythmias occurring in the heart are diagnosed because the expert evaluates ECG signals. This diagnosis depends on the experience of the specialist and is a subjective evaluation. With the widespread use of computer-aided diagnostic systems, evaluations dependent on the expert's experience are objectified, and support is provided to the physician for diagnosis. For computer-aided ECG classification, beats are detected from ECG signals, and arrhythmias are detected by analyzing the structure of these beats. In recent years, deep learning models have been successful in classifying ECG signals. The data to be used in the classification process is realized with the help of morphological features or images of the signal. The main objective of this study is to compare the classification performance of digital and visual heartbeat data for ECG signal classification. For this purpose, 1D-CNN and 2D-CNN architectures are used for the type of ECG signals. As inputs of the 1D-CNN model, numerical values of the heartbeat signal and hand-crafted features obtained from these numerical values were used. The inputs of the 2D-CNN model are the raw signal image, spectrogram, scalogram, Mel-spectrogram, GFCC, and CQT images, which are visual representations of the heartbeat signal. The results show that the numerical model of the ECG signal fails for classification, while the hand-crafted features provide 85.2% accuracy. The results obtained with the visual representation of the signal provided over 99% classification accuracy for all images. The highest success rate was 99.9% with the visualization of the raw signal. In line with these findings, the 2D-CNN architecture and the visual representation of the heartbeat signal were found to be the most suitable method for classifying ECG signals.

Publisher

Duzce Universitesi Bilim ve Teknoloji Dergisi

Reference49 articles.

1. [1] O. M. A. Ali, S. W. Kareem, and A. S. Mohammed, “Evaluation of Electrocardiogram Signals Classification Using CNN, SVM, and LSTM Algorithm: A review,” presented at 8th International Engineering Conference on Sustainable Technology and Development (IEC), pp. 185–191, 2022.

2. [2] “World health statistics 2018: monitoring health for the SDGs, sustainable development goals - RELACSIS | OPS/OMS,” Pan American Health Organization / World Health Organization, 2018. https://www3.paho.org/relacsis/index.php/es/noticias-relacsis/906-report-world-health-statistics-2018-monitoring-health-for-the-sdgs-sustainable-development-goals (accessed Jan. 12, 2023).

3. [3] E. J. Benjamin et al., “Heart disease and stroke statistics—2019 update: a report from the American Heart Association,” Circulation, vol. 139, no. 10, pp. e56–e528, 2019.

4. [4] X. Liu, H. Wang, Z. Li, and L. Qin, “Deep learning in ECG diagnosis: A review,” Knowledge-Based Systems, vol. 227, p. 107187, 2021.

5. [5] U. R. Acharya, S. L. Oh, Y. Hagiwara, J. H. Tan, M. Adam, A. Gertych, and R. San Tan, “A deep convolutional neural network model to classify heartbeats,” Computers in Biology and Medicine, vol. 89, pp. 389–396, 2017.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3