<italic>In vitro</italic> heat insulation efficacy of 5% dextrose versus 0.9% saline during radiofrequency ablation

Author:

Ma YanpingORCID,Wang JinfenORCID,Wu TaoORCID,Zheng BowenORCID,Yin TinghuiORCID,Lian YufanORCID,Ren JieORCID

Abstract

Purpose: This study compared the efficacy of heat insulation between 5% dextrose and 0.9% saline in radiofrequency ablation (RFA). Accordingly, temperature variations and maximum temperatures were assessed at identical distances and heat field distributions.Methods: Cubes of porcine liver tissue, measuring 10 mm across, were selected to precisely align the ablation boundary with the tissue boundary. An 18-gauge electrode with a 7-mm tip was inserted into each cube (10 per group) in a stainless-steel cup containing 40 mL of 5% dextrose or 0.9% saline. Fixed ablation was performed for 3 minutes using continuous mode at 30 W, simulating the typical thermal environment during thyroid RFA. Real-time temperature measurements were recorded by sensors positioned 0, 1, 3, and 5 mm from the cube’s edge. A comparative analysis was conducted to assess the maximum temperature, temperature variation, and duration of temperatures exceeding 42℃.Results: In both groups, the temperature curve declined with increasing distance from the edge of the ablated tissue. However, 0.9% saline exhibited higher maximum temperatures at 1, 3, and 5 mm compared to 5% dextrose (1 mm: 44.55°C±5.25°C vs. 34.68°C±3.07°C; 3 mm: 39.64°C±2.53°C vs. 29.22°C±2.21°C; 5 mm: 38.86°C±2.14°C vs. 28.74°C±2.51°C; all P&lt;0.001). Considering a nerve injury threshold of 42°C, the 0.9% saline also displayed a greater proportion of samples reaching this temperature and a longer duration of temperatures exceeding it (P&lt;0.05).Conclusion: The heat insulation efficacy of 5% dextrose at 1-5 mm exceeds that of 0.9% saline at identical distances and in a common thermal environment during thyroid RFA.

Funder

National Natural Science Foundation of China

Sun Yat-sen University

Third Affiliated Hospital of Sun YatSen University

Publisher

Korean Society of Ultrasound in Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3