Suppression of Coffee-Ring Effect on Nitrocellulose Membrane: Effect of Polyethylene Glycol

Author:

Shahruddin Sarah Sorfeena,Ideris Norhidayah,Kamarulzaman Nur Atikah

Abstract

In the development of the diagnostic kit, it was favorable to have a low antigen concentration due to the difficulty of antigen preparedness and purification. However, it can cause the coffee-ring effect, producing different pattern formations on the selected membrane. It can lead to a false interpretation of the result. Thus, the immobilization of protein solution (lysozyme) as a model protein for antigen, with the addition of hydrosoluble polymer additive onto a membrane, was evaluated to suppress the coffee-ring effect. This research aims to evaluate the effect of polyethylene glycol on the protein solution for coffee-ring effect suppression and to analyze the image of the coffee-ring effect. From the experimental studies, 5 different concentrations (v/v%) of PEG which are 3.0, 2.0, 1.0, 0.1 and 0.01 v/v% is added at 4.0 mg/mL of lysozyme solution before being spotted onto nitrocellulose membrane. The color intensity of the dried spot, together with the formation of the coffee-ring effect, is analyzed by Image-J software. It is the approach to measure the suppression of the ring effect, in which 0.01 v/v% concentration portrays the most faded ring effect on nitrocellulose membrane. This effect occurs due to a surface tension gradient that causes the solute particles to accumulate at the edge of the droplet. As Marangoni flow has been altered, the coffee-ring effect is successfully suppressed; thus, uniform pattern deposition is achieved.

Publisher

Universiti Putra Malaysia

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3