Author:
Suhaimi Nur Musfirah,Mohd Hassan Nurul Husna,Ibrahim Rushdan,Jasmani Latifah
Abstract
One way to minimize emissions of greenhouse gases that contribute to climate change is to reduce the use of wood as the main material for pulp and paper production. Therefore, non-woody plants such as bamboo can be alternatives as raw materials for pulp and paper. This study aims to determine the effect of the different bamboo species and age on the bamboo pulping yield and bamboo mechanical paper properties. Bambusa vulgaris, Gigantochloa levis, and Gigantochloa scortechinii bamboo species or locally known as Aur, Beting, and Semantan bamboo at the age of 1, 3, and 5-year old, were pulped using Soda-Anthraquinone (AQ) pulping. No beating process was conducted to all the papermaking processes to evaluate the basic mechanical properties of the bamboo paper. Pulping yield ranged from 35.7 to 51.7% at different bamboo species and age, with the pulping conditions at 20% of NaOH, 170ºC pulping temperature, 90 min time to reach pulping temperature and 90 min time at pulping temperature, 1:6 of bamboo to liquor ratio and 0.1% of AQ based on bamboo oven-dried weight. The paper was made according to TAPPI Standard T205 sp- 95. The paper mechanical properties for burst index, tear index, tensile index, and folding endurance ranged from 1.32 to 2.36 kPa.m2/g, 7.48 to 14.9 Nm2/g, 16.02 to 29.68 Nm/g, and 2 to 28 double folds, respectively, at different bamboo species and age. It was found that Beting bamboo has the potential to be a viable raw material for pulp and paper products as it shows the highest mechanical properties compared to Aur and Semantan.
Publisher
Universiti Putra Malaysia
Subject
General Earth and Planetary Sciences,General Environmental Science
Reference36 articles.
1. Alagbe, E. E., Bassey, E. S., Daniel, O. E., Shongwe, M. B., Ojewumi, M. E., & Igwe, C. C. (2019). Physical, chemical and mechanical properties of corn sheath as pulp and paper raw material. In Journal of Physics: Conference Series (Vol. 1378, No. 3, p. 032083). IOP Publishing. https://doi.org/10.1088/1742-6596/1378/3/032083
2. Ashuvila, M. A. (2014). Potential of non-wood fibres for pulp and paper-based industries (Doctoral dissertation). Universiti Tun Hussein Onn Malaysia, Malaysia.
3. Biermann, C. J. (1996). Introduction and the Literature. In Handbook of Pulping and Papermaking (pp. 1-12). Academic Press. https://doi.org/10.1016/b978-012097362-0/50005-4
4. Caulfield, D., & Gunderson, D. (1988, October 19-21). Paper testing and strength characteristics. In 1988 Paper Preservation Symposium (pp. 31-40). Capital Hilton, Washington.
5. Fatehi, P., Ates, S., & Ni, Y. (2010). Chemical pulping. Nordic Pulp & Paper Research Journal, 24(2), 193-198. https://doi.org/10.3183/npprj-2009-24-02-p193-198
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献