Statistical Analysis of Dry Grinding of Mica in Planetary Mill
-
Published:2022-05-25
Issue:3
Volume:30
Page:2191-2204
-
ISSN:2231-8526
-
Container-title:Pertanika Journal of Science and Technology
-
language:en
-
Short-container-title:JST
Author:
Ku Ishak Ku Esyra Hani,Saad Shafinaz,Saiyid Hashim Syed Fuad,Hussin Hashim
Abstract
A huge amount of energy can be used for fine particle breakage using the planetary mill resulting in high-cost consumption. Understanding how these operating parameters could affect the dry grinding mechanism in a planetary mill is still not sufficiently discussed. The effect of different operating parameters of planetary mills in the dry grinding of mica was investigated using statistical analysis. A laboratory scale of the planetary mill was used by varying the operating parameters such as grinding time (minutes), rotational speed (rpm), and percentage of grinding media (%). A full factorial design was used involving 48 experiments, and the grinding process’ efficiency was evaluated using the cut size of particles (d50) obtained from the particle size distribution analysis. The analysis was supported by morphological analysis by SEM image and structural distortion by XRD test. The statistical analysis showed a good correlation with the R2 value of 0.874 with the standard deviation of 0.852. It was found that the optimum parameters for grinding time, grinding speed, and grinding media were 20 minutes, 400 rpm, and 30% media charged, respectively, with the d50 value of 7.44 μm. This study provides further insight into the mica breakage operating parameters in a planetary mill.
Publisher
Universiti Putra Malaysia
Subject
General Earth and Planetary Sciences,General Environmental Science
Reference27 articles.
1. Andrić, L., Terzić, A., Aćimović-Pavlović, Z., Trumić, M., Petrov, M., & Pavlović, L. (2013). A kinetic study of micronization grinding of dry mica in a planetary ball mill. Advances in Materials Science and Engineering, 2013, 1-6. https://doi.org/10.1155/2013/543857 2. Abd, A. A. (2016). Study the effect of mica as filler in natural rubber properties. Journal of University of Babylon, 24(3), 773-781. 3. Ajaka, E. O., & Akinbinu, V. A. (2011). Design, fabrication and performance analysis of a planetary roll mill for grinding effect. ARPN Journal of Engineering and Applied Sciences, 4(6), 75-90. 4. Anderson, J., Shori, S., Jabbari, E., Ploehn, H. J., Gadala-Maria, F., & Priftis, D. (2020). Correlating coating quality of coverage with rheology for mica-based paints. Applied Rheology, 30(1), 119-129. https://doi.org/10.1515/arh-2020-0110 5. Arbain, R., Othman, M., & Palaniandy, S. (2011). Preparation of iron oxide nanoparticles by mechanical milling. Minerals Engineering, 24(1), 1-9. https://doi.org/10.1016/j.mineng.2010.08.025
|
|