Thermo-Electrical Behavior of Al2O3 and SiO2 Nanofluids in A Proton-Exchange Membrane Fuel Cell (PEMFC) Cooling Channel

Author:

Nadim Zarizi Muhammad Amirul,Zakaria Irnie Azlin,Johari Mohamad Noor Izwan,Wan Mohamed Wan Ahmad Najmi,Raja Ahsan Shah Raja Mazuir

Abstract

Proton Exchange Membrane Fuel Cell (PEMFC) generates electricity through the reaction of hydrogen and oxygen. PEMFC is considered clean technology since the by-products of the reaction are only electricity, water, and heat. Thermal management of PEMFC can be further improved through the adoption of nanofluids as its cooling medium. Nanofluids are fluids that contain suspensions of nanoparticles in their base fluid. Nanofluids have better heat transfer performance as compared to their base fluid due to their significant thermal conductivity improvement. However, unlike any other heat transfer application, there is a strict limit on the electrical conductivity of the nanofluids due to their electrically active environment. Therefore, there is a possible current leakage to the coolant due to the nanofluids’ conductive behavior. In this study, heat transfer performance and current drop of 0.5% Al2O3 and 0.5% SiO2 water were investigated. The nanofluids were forced to flow in a charged channel subjected to a heater pad of 60°C to 70°C to mimic the operating condition of a PEMFC. The performance of each nanofluid was observed and compared to distilled water. The channel temperature was reduced by 43.3 % and 42.7 % by Al2O3 and SiO2 nanofluids, respectively, compared to base fluids at Re 700. In terms of current drop, SiO2 nanofluids have the highest current drop with 2.33 % from the initial current value. It was further justified with the increment in electrical conductivity value of the fluids after the experiment, thus justifying the current leakage hypothesis.

Publisher

Universiti Putra Malaysia

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3