Multidrug Resistant Strains Inhibition by Bacillus Species from the Gut of Oreochomis niloticus and Pomacea canaliculata

Author:

Lirio Gary Antonio

Abstract

Antibiotic resistance is widespread in clinical settings, indicating a serious problem with infectious disease treatment. Novel strategies such as using natural products derived from microbes are being explored, generating increased research interest to address this issue. Here, the antimicrobial property of gut-associated Bacillus species against multidrug-resistant (MDR) strains; methicillin-resistant Staphylococcus aureus (MRSA), Escherichia coli producing extended-spectrum beta-lactamase (EsβL E. coli), and Pseudomonas aeruginosa producing metallo beta-lactamase (MβL P.aeruginosa) was evaluated using a cross-streak method and agar diffusion assay. The Bacillus isolates inhibited MRSA and ESβL E. coli with an average zone of inhibition of 9.57 ± 33.40 mm and 5.07 ± 32.69 mm, respectively, in the cross-streak method. The cell-free supernatant (CFS) of ten Bacillus species demonstrated anti-MRSA activity but was ineffective against ESβL E. coli and MβL P. aeruginosa. The relative enzyme activities of ten Bacillus isolates were determined in vitro, and amylase, caseinase, cellulase, lipase, and gelatinase production were confirmed. Isolates were identified as Bacillus siamensis, Bacillus velezensis, and Bacillus subtilis through biochemical tests and 16s rRNA sequence analysis. Minimum inhibitory concentrations (MICs) of the CFSs against MRSA range is between 12.5 and 25%. Bacillus species isolated from fish and snail guts exhibited antibacterial activity against MRSA. Therefore, it is imperative to confirm the presence of anti-MRSA active compounds in Bacillus CFS and characterize them further to determine their suitability for antimicrobial drug development.

Publisher

Universiti Putra Malaysia

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3