Classification of Fault Prediction: A Mapping Study

Author:

Shamsul Anwar Sasha Farhana,Mohd Rosli Marshima,Abdullah Nur Atiqah Sia

Abstract

Software fault prediction is an important activity in the testing phase of the software development life cycle and involves various statistical and machine learning techniques. These techniques are useful for making accurate predictions to improve software quality. Researchers have used different techniques on different datasets to build fault prediction in software projects, but these techniques vary and are not generalised. As a result, it creates challenges that make it difficult to choose a suitable technique for software fault prediction in a particular context or project. This mapping study focuses on research published from 1997 to 2020 involving fault prediction techniques, intending to determine a classification of fault prediction techniques based on problem types that researchers need to solve. This study conducted a systematic mapping study to structure and categorise the research evidence that has been published in fault prediction. A total of 82 papers are mapped to a classification scheme. This study identified research gaps and specific issues for practitioners, including the need to classify fault prediction techniques according to problem types and to provide a systematic way to identify suitable techniques for fault prediction models.

Publisher

Universiti Putra Malaysia

Subject

General Earth and Planetary Sciences,General Environmental Science

Reference34 articles.

1. Al Qasem, O., Akour, M., & Alenezi, M. (2020). The influence of deep learning algorithms factors in software fault prediction. IEEE Access, 8, 63945-63960. https://doi.org/10.1109/ACCESS.2020.2985290

2. Ardil, E., & Sandhu, P. S. (2010). A soft computing approach for modeling of severity of faults in software systems. International Journal of Physical Sciences, 5(2), 74-85. https://doi.org/10.5897/IJPS.9000037

3. Budgen, D., Turner, M., Brereton, P., & Kitchenham, B. (2008, September 10-12). Using mapping studies in software engineering. In Proceedings of Psychology of Programming Interest Group Workshop (Vol. 8, pp. 195-204). Lancaster, UK.

4. Caglayan, B., Misirli, A. T., Bener, A. B., & Miranskyy, A. (2015). Predicting defective modules in different test phases. Software Quality Journal, 23(2), 205-227. https://doi.org/10.1007/s11219-014-9230-x

5. Catal, C. (2011). Software fault prediction: A literature review and current trends. Expert Systems with Applications, 38(4), 4626-4636. https://doi.org/10.1016/j.eswa.2010.10.024

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multi-Class Imbalanced Data Classification: A Systematic Mapping Study;Engineering, Technology & Applied Science Research;2024-06-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3