Automated Islamic Jurisprudential Legal Opinions Generation Using Artificial Intelligence

Author:

Munshi Amr Abdullah,AlSabban Wesam Hasan,Farag Abdullah Tarek,Rakha Omar Essam,Al Sallab Ahmad,Alotaibi Majid

Abstract

Islam is the second-largest and fastest-growing religion. The Islamic Law, Sharia, represents a profound component of the day-to-day lives of Muslims. While sources of Sharia are available for anyone, it often requires a highly qualified person, the Mufti, to provide Fatwa. With Islam followers representing almost 25% of the planet earth population, generating many queries, and the sophistication of the Mufti qualification process, creating a shortage in them, we have a supply-demand problem, calling for Automation solutions. This scenario motivates the application of Artificial Intelligence (AI) to Automated Islamic Fatwa in a scalable way that can adapt to various sources like social media. In this work, the potential of AI, Machine Learning, and Deep Learning, with technologies like Natural Language Processing (NLP), paving the way to help the Automation of Islam Fatwa are explored. The work started by surveying the State-of-The-Art (SoTA) of NLP and exploring the potential use-cases to solve the problems of Question answering and Text Classification in the Islamic Fatwa Automation. The first and major enabler component for AI application for Islamic Fatwa, the data were presented by building the largest dataset for Islamic Fatwa, spanning the widely used websites for Fatwa. Moreover, the baseline systems for Topic Classification, Topic Modeling, and Retrieval-based Question-Answering are presented to set the future research and benchmark on the dataset. Finally, the dataset is released and baselines to the public domain to help advance future research in the area.

Publisher

Universiti Putra Malaysia

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Evaluating Artificial Intelligence Bias In Answering Religious Questions;2024 4th International Conference on Emerging Smart Technologies and Applications (eSmarTA);2024-08-06

2. Attention-based Spatialized Word Embedding Bi-LSTM Model for Sentiment Analysis;Pertanika Journal of Science and Technology;2023-11-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3