Author:
Noor Azam Muhammad Harith,Ridzuan Farida,Mohd Sayuti M Norazizi Sham
Abstract
Audio steganography is implemented based on three main features: capacity, robustness, and imperceptibility, but simultaneously implementing them is still a challenge. Embedding data at the Least Significant Bit (LSB) of the audio sample is one of the most implemented audio steganography methods because the method will give high capacity and imperceptibility. However, LSB has the lowest robustness among all common methods in audio steganography. To cater to this problem, researchers increased the depth of the embedding level from fourth to sixth and eighth LSB level to improve its robustness feature. However, consequently, the imperceptibility feature, which is commonly measured by Peak Signal to Noise Ratio (PSNR), is reduced due to the trade-off between imperceptibility and robustness. Currently, the lack of study on the estimation of the PSNR for audio steganography has caused the early assessment of the imperceptibility-robustness trade-off difficult. Therefore, a method to estimate PSNR, known as PSNR Estimator (PE), is introduced to enable early evaluation of imperceptibility feature for each stego-file produced by the audio steganography, which is important for the utilisation of embedding. The proposed PE estimates the PSNR based on the pattern collected from the embedment at different levels. From the evaluation, the proposed method has 99.9% of accuracy in estimating PSNR values at different levels. In comparison with the Mazdak Method, the proposed method performs better in all situations. In conclusion, the proposed PE can be used as a reference for embedding and further reducing the calculation complexity in finding the feasible value to minimise the trade-off between robustness and imperceptibility.
Publisher
Universiti Putra Malaysia
Subject
General Earth and Planetary Sciences,General Environmental Science
Reference32 articles.
1. Ahmed, M. A., Kiah, L. M., Zaidan, B. B., & Zaidan, A. A. (2010). A novel embedding method to increase capacity and robustness of low-bit encoding audio steganography technique using noise gate software logic algorithm. Journal of Applied Sciences, 10(1), 59-64. https://doi.org/10.3923/jas.2010.59.64
2. Ali, A. H., Mokhtar, M. R., & George, L. E. (2017). Enhancing the hiding capacity of audio steganography based on block mapping. Journal of Theoretical and Applied Information Technology, 95(7), 1441-1448.
3. Alsabhany, A. A., Ridzuan, F., & Azni, A. H. (2019). The adaptive multi-level phase coding method in audio steganography for confidential communication. IEEE Access, 7, 129291-129306. https://doi.org/10.1109/ACCESS.2019.2940640
4. Alsabhany, A. A., Ridzuan, F., & Azni, A. H. (2018). An adaptive multi amplitude thresholds embedding algorithm for audio steganography. Malaysian Journal of Science Health & Technology, 2 (Special Issue), 7-10. https://doi.org/10.33102/mjosht.v2i.43
5. Alsabhany, A. A., Ridzuan, F., Ridzuan, F., Azni, A. H., & Azni, A. H. (2020). The progressive multilevel embedding method for audio steganography. In Journal of Physics: Conference Series (Vol. 1551, No. 1, p. 012011). IOP Publishing. https://doi.org/10.1088/1742-6596/1551/1/012011
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献