Comparative Computational Study of Double Rotating Cylinder Embedded on Selig S1223 Aerofoil and Flat Plate for High Altitude Platform

Author:

Mohammad Ali Hidayatullah,Mohd Rafie Azmin Shakrine,Abdul Hamid Mohd Faisal,Md. Ali Syaril Azrad

Abstract

The high-altitude platform was built as an alternative approach to address the weakness of the terrestrial and satellite communication networks. It can be an aircraft or balloon positioned 20 to 50 km above the earth’s atmosphere. The use of the Magnus effect was not noticeable in the production of the high-altitude platform, while past research study has denoted its aerodynamic performance in generating greater lift and stall angle delay, which would be beneficial in creating such a flying device. This research delineates the proposed designs using the computational fluid dynamics approach utilizing ANSYS WORKBENCH 2019 software. The embedment of the rotating cylinder onto the design would best portray the use of the Magnus effect in generating higher lift coefficients with probable delay in stall angle. Hereby, the design of embedding rotating cylinder onto Selig S1223 aerofoil and the flat plate is proposed to test their aerodynamic performances for high altitude platform purposes. Here, Fluent fluid flow analysis was simulated for 500 RPM and 1000 RPM momentum injection with free stream velocities from 5 m/s to 30 m/s for different angles of attack of 0 to 20 degrees. The analysis has resulted in a greater impact on its lift coefficient and stall angle delay of about 39% and 53% enhancement for modified aerofoil while showing 128% and 204% betterment for modified flat plate than their respective unmodified model. Therefore, it is perceived that the CyFlaP has better stability yet is simplistic in a design suitable for HAP application.

Publisher

Universiti Putra Malaysia

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3