Electrophoretic Deposition of Hexagonal Boron Nitride Particles from Low Conductivity Suspension

Author:

Lau Kok-Tee,Samsudin Shahrizal

Abstract

Given that hexagonal boron nitride (hBN) particles are extremely stable in colloidal suspensions due to their low density, they are difficult to deposit via electrophoretic deposition (EPD). Poly (diallyldimethylammonium chloride) (PDDA) is widely used as a polyelectrolyte for ceramic particles because of its strong electrophoretic response. Nevertheless, studies on PDDA as a functionalising agent of hBN particles for EPD remain elusive. Here, hBN particles were functionalised with different amounts of PDDA to investigate effects on suspension stability and EPD yield. Deionised (DI)-water-based hBN particle suspensions with PDDA contents that varied from 0.3 wt% and 0.6 wt% (of hBN basis) were prepared using washed as-received hBN particles. Then, washed and nonwashed PDDA-functionalised hBN particle groups were prepared by subjecting only the former to water washing. Washing, which involved the repeated particle dispersion in DI water and vacuum filtration, successfully reduced the conductivity of the aqueous hBN suspension to 2 µS/cm, which was significantly lower than the conductivities of 180 and 25 µS/cm shown by the as-received particle suspension and PDDA-functionalised particles before washing. This result indicated that washing eliminated the interference of free ions on the suspension stability of hBN particles and EPD yield. In contrast to that of the nonwashed group, the suspension stability of the washed group decreased as the PDDA content was increased. Nevertheless, at 0.3 wt% and 0.6 wt% PDDA, the EPD yields of the washed group were 183% to 31% higher than those of the nonwashed group. This study provided new insight into the EPD of hBN particles using low-cost aqueous suspensions with sustainable ultralow ion conductivity.

Publisher

Universiti Putra Malaysia

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3