Arabic Handwriting Classification using Deep Transfer Learning Techniques

Author:

Almisreb Ali Abd,Md Tahir Nooritawati,Turaev Sherzod,Saleh Mohammed A.,Al Junid Syed Abdul Mutalib

Abstract

Arabic handwriting is slightly different from the handwriting of other languages; hence it is possible to distinguish the handwriting written by the native or non-native writer based on their handwriting. However, classifying Arabic handwriting is challenging using traditional text recognition algorithms. Thus, this study evaluated and validated the utilisation of deep transfer learning models to overcome such issues. Hence, seven types of deep learning transfer models, namely the AlexNet, GoogleNet, ResNet18, ResNet50, ResNet101, VGG16, and VGG19, were used to determine the most suitable model for classifying the handwritten images written by the native or non-native. Two datasets comprised of Arabic handwriting images were used to evaluate and validate the newly developed deep learning models used to classify each model’s output as either native or foreign (non-native) writers. The training and validation sets were conducted using both original and augmented datasets. Results showed that the highest accuracy is using the GoogleNet deep learning model for both normal and augmented datasets, with the highest accuracy attained as 93.2% using normal data and 95.5% using augmented data in classifying the native handwriting.

Publisher

Universiti Putra Malaysia

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3