Performance of CPU GPU Parallel Architecture on Segmentation and Geometrical Features Extraction of Malaysian Herb Leaves

Author:

Hadi N.A.,Halim S.A.,Lazim N.S.M.,Alias N.

Abstract

Image recognition includes the segmentation of image boundary geometrical features extraction and classification is used in the particular image database development. The ultimate challenge in this task is it is computationally expensive. This paper highlighted a CPU GPU architecture for image segmentation and features extraction processes of 125 images of Malaysian Herb Leaves. Two GPUs and three kernels are utilized in the CPU GPU platform using MATLAB software. Each of herb image has pixel dimensions 16161080. The segmentation process uses the Sobel operator which is then used to extract the boundary points. Finally seven geometrical features are extracted for each image. Both processes are first executed on the CPU alone before bringing it onto a CPU GPU platform to accelerate the computational performance. The results show that the developed CPU GPU platform has accelerated the computation process by a factor of 4.13. However the efficiency shows a decline which suggests that the processors utilization must be improved in the future to balance the load distribution.

Publisher

Universiti Putra Malaysia

Subject

General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3