Invariance Analysis and Closed-form Solutions for The Beam Equation in Timoshenko Model

Author:

Al-Omari, S. M.1,Hussain, A.2,Usman, M.3,Zaman, F. D.2

Affiliation:

1. Preparatory Year Program, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia and Interdisciplinary Research Center in Construction and Building Materials, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia

2. Abdus Salam School of Mathematical Sciences, Government College University, 68-B New Muslim Town, 54600 Lahore, Pakistan

3. College of Electrical and Mechanical Engineering, National University of Sciences and Technology, H-12 Islamabad 44000, Pakistan

Abstract

Our research focuses on a fourth-order partial differential equation (PDE) that arises from the Timoshenko model for beams. This PDE pertains to situations where the elastic moduli remain constant and an external load, represented as F, is applied. We thoroughly analyze Lie symmetries and categorize the various types of applied forces. Initially, the principal Lie algebra is two-dimensional, but in certain noteworthy cases, it extends to three dimensions or even more. For each specific case, we derive the optimal system, which serves as a foundation for symmetry reductions, transforming the original PDE into ordinary differential equations. In certain instances, we successfully identify exact solutions using this reduction process. Additionally, we delve into the conservation laws using a direct method proposed by Anco, with a particular focus on specific classes within the equation. The findings we have presented in our study are indeed original and innovative. This study serves as compelling evidence for the robustness and efficacy of the Lie symmetry method, showcasing its ability to provide valuable insights and solutions in the realm of mathematical analysis.

Publisher

Universiti Putra Malaysia

Subject

General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Invariance and Ibragimov approach with Lie algebra of a nonlinear coupled elastic wave system;Partial Differential Equations in Applied Mathematics;2024-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3