An Application on an Information System via Nano Ordered Topology

Author:

Shalil S. H.1,El-Sheikh S. A.2,Kandil S. A.3

Affiliation:

1. Helwan University, Helwan, Egypt

2. Ain Shams University, Cairo, Egypt

3. Canadian International College, Cairo, Egypt

Abstract

Rough set theory is commonly used to handle uncertainty in various applications. In order to broaden its application scope, the classical rough set model based on equivalence relations, it has been extended to include an additional partial order relation. This partial order relation represents an m-nano flou set, as defined in Section 5, between rough sets and is particularly useful in determining the levels of impact that key factors have on heart failure. The primary objective of the current research is to introduce a novel approximation method based on equivalence relations and partial order relations (ordered approximation spaces), which extends Pawlak's method and investigates related results. The paper establishes the equivalence between our approach and Pawlak's approach under the condition that we have an equivalence relation and a partial order relation that satisfies the criteria required for it to be considered an equality relation. The second objective is to extend the concept of nano topology to include nano ordered topology, which involves nano increasing or decreasing topological spaces. The research indicates that incorporating nano increasing or decreasing topological spaces results in enhanced data analysis accuracy when compared to solely utilizing nano topological spaces. This observation aligns with the discussions in the referenced work by Jayalakshmi. The findings of this research have the potential to significantly impact medical research related to heart failure. Improved methods for handling uncertainty and quantifying the influence of various factors can lead to more accurate and reliable predictions and diagnoses. Ultimately, this work aims to contribute to advancements in heart failure treatment and prevention. By bridging the gap between traditional rough set theory and the nuanced intricacies of heart failure analysis, our research strives to advance our comprehension of this critical medical condition and, in turn, support progress in heart failure treatment and prevention.

Publisher

Universiti Putra Malaysia

Subject

General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3