Incorporation of Rice Husk Ash with Palm Oil Mill Wastes in Enhancing Physicochemical Properties of the Compost

Author:

Hisham Nur Eliza Badrul,Ramli Nor Hanuni

Abstract

Rice husk ash (RHA), palm oil mill effluent (POME) sludge and decanter cake can be utilized together in compost production to minimize the environmental pollution. This study aims to evaluate the role of different composition of RHA in enhancing the physicochemical properties of palm oil-based compost. The composts were prepared by mixing different composition of RHA, in the range of 0% to 30%, with 1:1 (wt/wt) weight ratio of POME sludge and decanter cake. The moisture content, water holding capacity, pH, nitrogen (N), phosphorus (P), potassium (K), silica (Si) contents, and C:N ratio of raw materials were analyzed by using CHNS and WDXRF analyzers. The composting process was conducted in compost containers for 60 days, in which the temperature and pH of the composts were monitored daily. The finished composts were analyzed for physicochemical properties as same as raw materials. For physical properties of finished composts, RHA30 had the highest moisture content and water holding capacity which was 1.9 to 23.8% (wt/wt) and 4.2 to 26.8% higher compared to other finished composts, respectively. For chemical properties, the highest N and P contents were recorded by control compost. However, for K and Si content, the elements were found to be higher in RHA10 and RHA30, respectively, compared to other finished composts. Overall, RHA, POME sludge and decanter cake combination in compost production can create a well-balanced condition for the compost to perform effectively as an organic fertilizer. The addition of 5% to 10% RHA in compost formulation made from palm oil mill wastes is suggested to achieve the desirable condition.

Publisher

Universiti Putra Malaysia

Subject

Plant Science,Forestry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3