Development of an In-house aPPD ELISA for Mycobacterium avium Complex (MAC) Antibodies Detection in Zoo Primates
-
Published:2024-05-30
Issue:2
Volume:47
Page:549-557
-
ISSN:2231-8542
-
Container-title:Pertanika Journal of Tropical Agricultural Science
-
language:en
-
Short-container-title:JTAS
Author:
Lekko Yusuf Madaki,Che-Amat Azlan,Toung Ooi Peck,Omar Sharina,Ramanoon Siti Zubaidah,Mazlan Mazlina,Abdullah Jesse Faez Firdaus
Abstract
In non-human primates (NHPs), Mycobacterium avium complex (MAC) species are the major source of non-tuberculous mycobacteriosis, causing tuberculous-like lesions in lymph nodes and parenchymatous organs in zoo and wildlife animals. Poor species-specific detection by serological diagnosis has negatively impacted the surveillance of MAC on non-human primates. Serum was collected from suspected twelve (n = 12) NHPs with no record of health monitoring, including gibbon (n = 5), capuchins (n = 2), siamang (n = 2), mandrill (n = 1), and orangutan (n = 2). An in-house avian purified protein derivative (aPPD) enzyme-linked immunosorbent assays (ELISA) antibody detection was developed and modified based on the established protocols. The aPPD ELISA for MAC antibodies detection at serum and Protein-G dilutions of 1:200-0.5µg/ml, respectively, detected 3/12 (25%) positive serum. At both serum and Protein-G dilutions of 1:100-0.05 and 1:300-1 µg/ml, the aPPD ELISA detected 12/12 (100%), respectively. The antibody was not detected for an in-house aPPD ELISA with serum and anti-monkey immunoglobulin G (IgG) dilutions at 1:100-0.5 and 1:300-1 µg/ml. However, 2/12 (16%) was detected using serum and anti-monkey IgG dilutions at 1:200-0.05 µg/ml. An in-house aPPD ELISA procedure for MAC antibodies detection in primates, at serum and Protein-G dilutions of 1:100-0.05 and 1:300-1 µg/ml, both have shown sensitivity and specificity of 100%, positive predictive value and negative predictive value of 100%, respectively. The serum and anti-monkey IgG have shown extremely low sensitivity and specificity. In conclusion, the performance of an in-house aPPD ELISA using three different dilutions on serum and conjugates in detecting MAC in a primate has shown that Protein-G horseradish peroxidase, as secondary conjugates were able to detect MAC antibodies.
Publisher
Universiti Putra Malaysia
Reference15 articles.
1. Aurtenetxe, O., Barral, M., Vicente, J., de la Fuente, J., Gortázar, C., & Juste, R. A. (2008). Development and validation of an enzyme-linked immunosorbent assay for antibodies against Mycobacterium bovis in european wild boar. BMC Veterinary Research, 4, 43. https://doi.org/10.1186/1746-6148-4-43 2. Bezos, J., Casal, C., Romero, B., Schroeder, B., Hardegger, R., Raeber, A. J., López, L., Rueda, P., & Domínguez, L. (2014). Current ante-mortem techniques for diagnosis of bovine tuberculosis. Research in Veterinary Science, 97, S44–S52. https://doi.org/10.1016/j.rvsc.2014.04.002 3. Biet, F., Boschiroli, M. L., Thorel, M. F., & Guilloteau, L. A. (2005). Zoonotic aspects of Mycobacterium bovis and Mycobacterium avium-intracellulare complex (MAC). Veterinary Research, 36(3), 411–436. https://doi.org/10.1051/vetres:2005001 4. Boadella, M., Lyashchenko, K., Greenwald, R., Esfandiari, J., Jaroso, R., Carta, T., Garrido, J. M., Vicente, J., de la Fuente, J., & Gortázar, C. (2011). Serologic tests for detecting antibodies against Mycobacterium bovis and Mycobacterium avium subspecies Paratuberculosis in Eurasian wild boar (Sus scrofa scrofa). Journal of Veterinary Diagnostic Investigation, 23(1), 77–83. https://doi.org/10.1177/104063871102300111 5. Che’ Amat, A., González-Barrio, D., Ortiz, J. A., Díez-Delgado, I., Boadella, M., Barasona, J. A., Bezos, J., Romero, B., Armenteros, J. A., Lyashchenko, K. P., Venteo, A., Rueda, P., & Gortázar, C. (2015). Testing Eurasian wild boar piglets for serum antibodies against Mycobacterium bovis. Preventive Veterinary Medicine, 121(1–2), 93–98. https://doi.org/10.1016/j.prevetmed.2015.05.011
|
|