In silico Analysis of OsNRT2.3 Reveals OsAMT1.3, OsZIFL9, OsbZIP27, and OsIRT1 as Potential Drought-related Genes During Nitrogen Use Efficiency in Oryza sativa L.

Author:

Abdullah-Zawawi Muhammad-Redha,Busiri Karwatik,Johan Syafiqah,Ullah ohammad Asad,Zainal Zamri

Abstract

Nitrate transporter (NRT) is responsible for the molecular mechanism of the root nitrate (NO3-) uptake system for plant development. Although several NRT genes are identified and characterised in plants, knowledge of the NRT2 gene family and its nitrogen use efficiency (NUE) function in drought stress has remained elusive in rice. This study conducted an in silico analysis on 20 NRT2 family genes of rice, wheat, soybean, barley, maize, and papaya. Phylogenetic and motifs analysis clustered genes encoding NRT2 proteins into four monophyletic groups, and the motifs of NRT2 genes were significantly conserved for the specific domain of NO3- transmembrane transporter. Interestingly, co-expression analysis revealed that potential drought-related genes were expressed similarly to the functional NUE gene, OsNRT2.3. Furthermore, half of the co-expressed genes were enriched in nitrogen use efficiency (NUE)-related processes, such as transport, stress, macromolecule metabolic pathways, and transcription regulation. Expression pattern analysis of OsNRT2.3 and its co-expressed genes in tissue-specific and nitrogen (N) response led to the discovery of OsAMT1.3, OsZIFL9, OsbZIP27, and OsIRT1 as four strong candidates to participate in drought stress during NO3- uptake system. The co-expression of iron (Fe) uptake genes, OsZIFL9 and OsIRT1, with OsNRT2.3 also suggested a possible interaction of Fe and nitrogen (N) during an increasing amount of Fe, which led to the acidification of rice apoplasts during water deficiency. Together, this study will provide a valuable resource for potential candidate genes that can further investigate their molecular response to drought during NUE.

Publisher

Universiti Putra Malaysia

Subject

Plant Science,Forestry

Reference68 articles.

1. Abdullah‐Zawawi, M. R., Afiqah‐Aleng, N., Ikhwanuddin, M., Sung, Y. Y., Tola, S., Fazhan, H., & Waiho, K. (2021). Recent development in ecdysone receptor of crustaceans: Current knowledge and future applications in crustacean aquaculture. Reviews in Aquaculture, 13(4), 1938-1957. https://doi.org/10.1111/raq.12552

2. Ai, Z., Wang, G., Liang, C., Liu, H., Zhang, J., Xue, S., & Liu, G. (2017). The effects of nitrogen addition on the uptake and allocation of macro- and micronutrients in Bothriochloa ischaemum on Loess Plateau in China. Frontiers in Plant Science, 8, 1476. https://doi.org/10.3389/fpls.2017.01476

3. Awasthi, S., Chauhan, R., Indoliya, Y., Chauhan, A. S., Mishra, S. K., Agrawal, L., Dwivedi, S., Singh, S. N., Srivastava, S., Singh, P. C., Chauhan, P. S., Chakrabarty, D., Srivastava, S., & Tripathi, R. D. (2021). Microbial consortium mediated growth promotion and arsenic reduction in rice: An integrated transcriptome and proteome profiling. Ecotoxicology and Environmental Safety, 228, 113004. https://doi.org/10.1016/j.ecoenv.2021.113004

4. Bailey, T. L., Boden, M., Buske, F. A., Frith, M., Grant, C. E., Clementi, L., Ren, J., Li, W. W., & Noble, W. S. (2009). MEME SUITE: Tools for motif discovery and searching. Nucleic Acids Research, 37(suppl_2), W202–W208. https://doi.org/10.1093/nar/gkp335

5. Bao, A., Liang, Z., Zhao, Z., & Cai, H. (2015). Overexpressing of OsAMT1-3, a high affinity ammonium transporter gene, modifies rice growth and carbon-nitrogen metabolic status. International Journal of Molecular Sciences, 16(5), 9037-9063. https://doi.org/10.3390/ijms16059037

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3