Author:
Khompun Wilailuck,Theerakarunwong Chonlada Dechakiatkrai,Chouychai Waraporn
Abstract
Synthetic pyrethroid contamination in water is a serious environmental concern as this pesticide is highly toxic to aquatic animals. Phytoremediation using aquatic plants that can tolerate and accumulate pyrethroid pesticides is an interesting alternative. In this study, the phytotoxicity of cypermethrin and deltamethrin, alone or in combination, to three aquatic plants, Azolla microphylla, Salvinia cucullate, and Spirodela polyrrhiza were tested. The results show that S. cucullate was the most sensitive species because the pigment content in the fronds significantly decreased when exposed to pyrethroid in water. Azolla microphylla was the most tolerant species because the pigment content in their fronds significantly increased when exposed to pyrethroid and cypermethrin, which could also significantly increase the plant fresh weight of A. microphylla. Both species could accumulate synthetic pyrethroid pesticides in their tissue. The bioconcentration factors of cypermethrin and deltamethrin in A. microphylla were 3,508.8 and 2,323.5, respectively, while the bioconcentration factors of cypermethrin and deltamethrin in S. cucullate were 453.0 and 381.7, respectively. Azolla microphylla is appropriate for use in pyrethroid phytoremediation in water.
Publisher
Universiti Putra Malaysia
Reference19 articles.
1. Arnon, D. I. (1949). Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiology, 24(1), 1–15. https://doi.org/10.1104/pp.24.1.1
2. Aveek, S., Jyoti, P. S., Jaydeb, J., & Somashree, M. (2019). Effect of cypermethrin on growth, cell division and photosynthetic pigment content in onion, maize and grass pea. Research Journal of Chemistry and Environment, 23(8), 126-129.
3. Ayad, M. A., Fdil, M. A., & Mouabad, A. (2011). Effects of cypermethrin (pyrethroid insecticide) on the valve activity behavior, byssal thread formation, and survival in air of the marine mussel Mytilus galloprovincialis. Archives of Environmental Contamination and Toxicology, 60, 462-470. https://doi.org/10.1007/s00244-010-9549-7
4. Ensminger, M., Bergin, R., Spurlock, F., & Goh, K. S. (2011). Pesticide concentrations in water and sediment and associated invertebrate toxicity in Del Puerto and Orestimba Creeks, California, 2007–2008. Environmental Monitoring and Assessment, 175, 573-587. https://doi.org/10.1007/s10661-010-1552-y
5. Iha, D. S., & Bianchini Jr., I. (2015). Phytoremediation of Cd, Ni, Pb and Zn by Salvinia minima. International Journal of Phytoremediation, 17(10), 929-935. https://doi.org/10.1080/15226514.2014.1003793
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献