Complementarity in Rubber-Salacca Intercropping System under Integrated Fertilization Mixed with Organic Soil Amendments

Author:

Zaw Zar Ni,Chiarawipa Rawee,Pechkeo Surachart,Saelim Sakanan

Abstract

The replanting practice of rubber monocropping in Southern Thailand has depleted soil fertility. Most rubber planted areas in the region were under intensive chemical fertilization resulting in less soil organic matters and root proliferation. With the instability of rubber prices, some rubber farmers converted from monocropping into intercropping. Integrated fertilization in which mixed organic-inorganic fertilizers are combined with organic soil amendments could be considered in a rubber-based intercropping system to increase land productivity with cost-saving fertilization by rehabilitating soil properties. A study was conducted at a rubber-salacca intercropping farm comprised of 14-year-old mature rubber trees associated with eight-year-old salacca palms to identify the consequences of the integrated fertilization combined with two organic soil amendments: humic acid (HSA); chitosan (CSA). Changes in soil organic matter (SOM), leaf area index (LAI), fine root traits, tree physiological status, and crop productions under the two integrated fertilization were compared against the controlled application of conventional chemical fertilizer. The CSA application increased the SOM in the topsoil layer by 80%. In the 21 – 40 cm soil depth, the rubber roots treated with HSA and the salacca palm roots treated with CSA showed greater fine root length density (FRLD). Under CSA, the physiological status of the rubber trees showed less stress. The treatments of HSA and CSA showed 145% and 72%, respectively, higher in total production of salacca palm than that of the chemical fertilization. Improvements in the soil fertility, the root’s function, the crops’ yields, and the tree physiological status were consequences as complementarity in the system under the integrated fertilizations.

Publisher

Universiti Putra Malaysia

Subject

Plant Science,Forestry

Reference51 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3