Rumen Volatile Fatty Acids and Morphology of the Rumen Mucosa of Swamp Buffalo Raised under Semi-Intensive and Extensive System in Tropical Environment

Author:

Mat Amin Fhaisol,Mohd Azmi Amirul Faiz,Hakim Idris Lokman,Abu Hassim Hasliza,Saad Mohd Zamri,Abu Bakar Md Zuki

Abstract

Swamp buffaloes are mostly raised under an extensive system because they can adapt to the harsh environment. However, exploring the rumen mucosa (RM) morphology and volatile fatty acids (VFA) of swamp buffalo associated with different production systems is still lacking. This study evaluated the rumen VFA and morphology of RM between two groups of buffalo raised under semi-intensive (SI) and an extensive system (EX). VFA was analysed using gas chromatography. The morphology of rumen mucosa was evaluated macro and microscopically for papillae length and width, surface area, density, and muscle thickness, and the microscopic evaluation for stratified squamous epithelium (SSE) and keratin thickness. SI has a greater VFA concentration than the EX. The SSE layer on the dorsal region of the rumen was thicker in the EX group than in the SI group (p≤0.05). Within the group, the SSE of the dorsal region of rumen was thicker than the ventral region (p≤0.05) in the EX group. However, the ventral region of the rumen was thicker than the dorsal region in the SI group. The thickness of the keratin layer in the EX group was significantly thicker than the SI group (p≤0.05) only on the dorsal region. In conclusion, swamp buffalo from the SI production system has a greater concentration of volatile fatty acid than the EX-group contributed by feeding management under a semi-intensive system. Nevertheless, the advantage in VFA concentration alone is not sufficient to conclude semi-intensive production system exerts a favourable effect on the morphology of the rumen mucosa.

Publisher

Universiti Putra Malaysia

Subject

Plant Science,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3