Nutritional Characteristics of Biochar from Pineapple Leaf Residue and Sago Waste

Author:

Bohari Norshidawatie,Mohidin Hasmah,Idris Juferi,Andou Yoshito,Man Sulaiman,Saidan Hushairy,Mahdian Suraiya

Abstract

Biochar produced from biomass with high nutrient content is essential for improving the quality of agricultural soils. An abundance of biomass is converted into biochar with high nutrient content, but studies on the conversion of pineapple and sago waste into biochar are still limited. This research aimed to produce biochar from pineapple leaf (PLB), sago bark (SBB), and sago pith (SPB) through the carbonization process with low temperature. The samples were carbonized using a laboratory electric oven at a low temperature of 350°C. The raw biomass and biochar produced were then subjected to elemental analysis and characterization. The mineral contents of carbonized biochar such as K, N, S, Mg, and Ca increased from those of the feedstock concentrations. For PLP, K element increased 24-fold from 2.44 ± 0.73% to 48.32 ± 9.92%, while N element increased from 6.13 ± 2.39% to 8.33 ± 5.34%. However, for both SBB and SPB, N and K nutrients increased by 2-fold. The study reveals that pineapple leaf biochar has the potentials to be used as an alternative soil amendment to elevate soil nutrient and quality.

Publisher

Universiti Putra Malaysia

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3