Author:
Che Ismail Nazmi,Abdullah Mohd Zulkifly,Mazlan Nurul Musfirah,Mustafa Khairil Faizi,Rusdi Mohd Syakirin,Kamarudin Roslan
Abstract
Experimental investigations are currently exploring the impact of adding porous layers within burner housing on thermal and exergy efficiency. Specifically, the focus is on understanding the significance of double layers on porous media combustion and how it can improve fuel mixing and flame stability. Premixed butane-air combustion in rich conditions was examined using three different sizes of burners (i.e., 23 mm, 31 mm, and 44 mm) porous media with equivalence ratios ranging from ф = 1.3 to 2.0. The experimental findings revealed a substantial improvement in performance efficiency (thermal and exergy) as the equivalence ratio increased. This study reveals that smaller burner diameters (ID, inner diameter = 23 mm) provide greater efficiency than larger ones (ID = 31 mm and 44 mm). The maximum flame temperature and porous wall temperature are found to decrease as the equivalence ratio increases. The highest temperature measured was 924.82°C for 23 mm, 910.23°C for 31 mm, and 850.76°C for 44 mm at ф = 1.3. Lastly, the thermal and exergy efficiency in a 23 mm porous media burner (PMB) is higher at ф = 2.0 at 84.30% and 83.47%, respectively. It can be concluded that the diameter size of the burner and equivalence ratio for double-layer porous material influence the performance (efficiency) of PMB.
Publisher
Universiti Putra Malaysia