The Mechanical and Physical Properties of 3D Printing Filament made from Recycled Polypropylene and Ground Tyre Rubber Treated with Alkali

Author:

Yusuf Yusliza,Mustafa Nuzaimah,Yusoff Yusra Fitri,Sulistyarini Dwi Hadi

Abstract

When molten, used vehicle tyres are unable to decompose or be recycled. Despite global efforts to find new uses for these materials, many worn tyres are still dumped in landfills. Therefore, this study proposes using ground tyre rubber (GTR) as a fill material for recycled polypropylene 3D printing filament. The filament composite’s physical and mechanical properties will be assessed in this investigation. GTR is expected to give the filament elastic characteristics, which could lead to rubber-like filaments. This study filled recycled polypropylene (rPP) polymer matrix composites with GTR to make filament. The mechanical and physical properties of a 3D-printed specimen made from rPP and GTR filament with varying compositions were analysed. Compared to pure rPP, rPP/GTR samples with 3 wt% GTR had a maximum tensile strength of 716.76 MPa. The flexural test findings showed that rPP/GTR with 3 wt% GTR had the highest flexural strength at 80.53 MPa, followed by rPP/1 wt% GTR at 65.38 MPa. In physical tests, the rPP/GTR at 5 wt% GTR had the highest water absorption at 5.41 %, and the wt% of GTR connected directly with water absorption. This study has shown that affordable, environmentally friendly rPP/GTR filaments can be developed with less amount of GTR content (3 wt%) and used for 3D printing applications, helping to lessen the impact of plastic and waste while having valuable mechanical and physical properties that are comparable to those of the pure polypropylene material produced.

Publisher

Universiti Putra Malaysia

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3