Assessment of Detailed Energy Conservation Potentials: The Case of the Ethiopian Leather Industry

Author:

Millerjothi Narayanan Kalamegam,G. Gebreslassie Mulualem,Nithyanandhan Thangavel,Sachuthananthan Barathy

Abstract

One of the most crucial components in any industrial operation is energy. However, the supply is not limitless. One of the key ingredients in cement production is energy, whose cost share ranges from 8 to 15% of overall production costs in developed nations but is much more in undeveloped nations. Therefore, the objective of this extensive research was to carry out a thorough energy conservation audit at the Sheba leather factory, located in the city of Mekelle, in the north region of Ethiopia. The specific objective of this research was to analyse the patterns of power consumption, identify energy-saving techniques, as well as to propose energy-saving recommendations for their implementation. It was obtained using primary and secondary data from the industry personnel. As a result, a total of 19 recommendations for energy saving were found and were forwarded for consideration. These recommendations have the potential to save a total of about $ 29900 annually, but their implementation would cost close to $ 15900, with a payback period of seven months. These recommendations also cover the utilities of the boiler, motors, blower, air compressors, cooling tower, and lighting. In order to lower their energy use, economic benefits are also considered.

Publisher

Universiti Putra Malaysia

Reference20 articles.

1. Al-Ghandoor, A., Al-Hinti, I., Jaber, J. O., & Sawalha, S. A. (2008). Electricity consumption and associated GHG emissions of the Jordanian industrial sector: Empirical analysis and future projection. Energy Policy, 36(1), 258-267. https://doi.org/10.1016/j.enpol.2007.09.020

2. Benhelal, E., Zahedi, G., Shamsaei, E., & Bahadori, A. (2013). Global strategies and potentials to curb CO2 emissions in cement industry. Journal of Cleaner Production, 51, 142-161. https://doi.org/10.1016/j.jclepro.2012.10.049

3. Berry, J., Griffin, M., & Wright, A. L. (2006). Steam pressure reduction, opportunities, and issues. Oak Ridge National Lab. (ORNL).

4. Bhukya, P., & Basak, D. (2014). Energy saving technologies in industries-an overview. International Journal of Scientific and Research Publications, 4(4), 499-504.

5. Bureau of Energy Efficiency. (2018). Energy conservation guidelines for industries. Bureau of Energy Efficiency.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3