Mesh Optimisation for General 3D Printed Objects with Cusp-Height Triangulation Approach

Author:

Habash Qais Ahmed,Ali Sadek Noor,Hussein Ahmed Faeq,AlZubaidi Abbas

Abstract

3D printing (3DP) is increasingly utilized to achieve quick turnaround on various geometric designs and prototypes, being the growing part of additive manufacturing technology (AMT). The 3DP technique effectively improves the production of complex models in terms of low-cost, time-consuming production, and with less material volume. The key to results optimisation with 3DP is the preparation of the geometry. The following techniques can effectively reduce the required time of the 3D printing process for complex and non-linear CAD files. The fused deposition modelling/fabrication (FDM/FFF) techniques become the first choice in many applications, including biomedical ones. Still, some obstacles exist in the geometry roughness and quality zones. This paper proposes an optimisation method for 3D printed shapes used in biomedical devices and instrumentation by minimising the support structure attached to the model using the FDM technique. In this research, we proposed a method for dynamic compensation against gravity-affected parts extended from the main object’s geometry using a forward planar learning (FPL) algorithm to minimise cusp height in 3D printed objects. After the slicing stage, the outcomes proved to be of good quality, optimised the object’s surfaces, and minimised the printing time by 32%–38%. The proposed method is promising in defining a better setting for slicing and toolpath for FDM 3D printing. However, this method was not tested on other 3DP methods (Stereolithography (SLA), Selective laser sintering (SLS), and Digital Light Processing (DLP)), as more verification efforts need to be done on these 3D printing processes.

Publisher

Universiti Putra Malaysia

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3