The Green Energy Effect on an HCCI Engine from Used Cooking Oil-based Biodiesel from Malaysia

Author:

Abdulabbas Mossa Muntasser,Hairuddin Abdul Aziz,Abdul Aziz Nuraini,Muhamad Tobib Hasyuzariza

Abstract

Emissions from internal combustion engines (ICEs) significantly impact the environment, leading continents worldwide to work towards reducing them. The industry is increasingly leaning towards electric powertrains. However, power plants still utilize ICEs as generators, contributing to global pollution. Consequently, ICE emissions are garnering international attention. Alternatives like the Homogeneous Charge Compression Ignition (HCCI) engine and biodiesel fuels are being explored. HCCI engines have not been extensively tested with Used Cooking Oil (UCO) biodiesel. This study investigates the performance and emissions of HCCI engines using UCO-based biodiesel. This study tested an air-cooled, single-cylinder, 4-stroke diesel engine operating at 3600 rpm with a displacement of 0.219 liters. The HCCI mode was activated during preheating and run at 2700 rpm under varying biodiesel blend percentages and intake temperatures. In HCCI mode, brake-specific fuel consumption (BSFC) increased, peaking at a 90°C intake temperature. Diesel fuel in-cylinder pressure reached a maximum of 81 bars at 90°C, decreasing to 79 bars at 70°C. The HCCI mode resulted in lower NOx, CO, and UHC emissions. Higher biodiesel blend ratios further reduced CO emissions. Raising the intake air temperature to 90°C lowered NOx emissions by 96.66%, from 150 ppm to 5 ppm. Using green energy sources as fuel in HCCI engines significantly reduced emissions in this study, suggesting their potential as a future fuel for advanced engines.

Publisher

Universiti Putra Malaysia

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3