Conceptual Design and Materials Selection of the FDM Composites for Passenger Vehicle’s Spoiler

Author:

Shaharuzaman Mohd Adrinata,Sayed Idros Syed Muhammad Ayyub,Mohammad Taha Mastura,Mansor Muhd Ridzuan,Jumaidin Ridhwan,Senan Hilmi

Abstract

One of the additive manufacturing techniques available is Fused Deposition Modeling (FDM), which offers advantages in design flexibility, cost-effectiveness, and the ability to produce intricate designs. Therefore, FDM for the 3D-printed vehicle’s car spoiler is a subject that can be explored. The FDM technology can significantly reduce time and cost before mass production, and the vehicle’s car spoiler was used as the case study in this research. The research investigates the mechanical properties of various commercial PLA composite filaments, addressing the lack of specifications provided by manufacturers. Testing four types of filaments—PLA/bamboo, PLA/coconut, PLA/wood, and PLA/metal. This research also emphasizes the conceptual design generation and selection for the passenger vehicle’s spoiler. Five design concepts were generated using the morphological chart for the passenger vehicle’s spoiler. The Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) method was used as the decision-making tool. As a result, PLA/metal, with 53.65 MPa and 70.23 MPa, showed the highest tensile and flexural strength values, respectively. Design concept 5 with the infill pattern of rib + I was the best from the finite element analysis (FEA) using SolidWorks simulation software. Finally, the TOPSIS technique revealed PLA/metal as the best PLA composite filament for car spoilers, scoring first in performance score with a value of 0.5774. This study demonstrates that by using a systematic approach, researchers may choose the best design concept and material choice by combining the conceptual design, experimental, simulation, and TOPSIS methods.

Publisher

Universiti Putra Malaysia

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3